Hydrobiologia

, Volume 517, Issue 1–3, pp 1–13

On the celestite-secreting Acantharia and their effect on seawater strontium to calcium ratios

  • Patrick De Deckker
Article

Abstract

Significant variations in the Sr/Ca in waters from the eastern Indian Ocean in the vicinity of Australia, both from the surface and from shallow depth profiles, are documented. The strontium sulfate-secreting protozoans Acantharia, which are common in the upper 400 m of the oceans, especially at low latitudes, contribute substantially to changes in the Sr/Ca of oceanic waters by extracting Sr for the formation of their skeletons. Below such depths, these organisms dissolve and the Sr/Ca of seawater regains its ‘conservative’ nature. This mechanism accounts for some of the variability of the Sr/Ca near the surface of the ocean, but this may still be found at depth as surface waters become entrained at greater depths. It is argued here that the noted Sr/Ca variations may explain discrepancies between coral data sets from different parts of the oceans, and calls for caution when reconstructing sea-surface temperatures from the Sr/Ca of corals.

Acantharia sarcodine protozoan strontium sulfate Indian Ocean coral palaeothermometry seawater chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alibert, C. & M. T. McCulloch, 1997. Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea-surface temperature: calibration of the thermometer and monitoring ENSO. Paleoceanography 12: 345–363.Google Scholar
  2. Andersen, N. R., J. D. Gassaway & W. E. Maloney, 1970. The relationship of the strontium: chlorinity ratio of water masses in the tropical Atlantic Ocean and Carribean Sea. Limnology and Oceanography 15: 467–472.Google Scholar
  3. Anderson, D. M., W. L. Prell & N. J. Barratt, 1989. Estimates of sea surface temperature in the Coral Sea at the last glacial maximum. Paleoceanography 4: 615–627.Google Scholar
  4. Bard E., F. Rostek & C. Sonzogni, 1997. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385: 707–710.Google Scholar
  5. Beck, J. W., R. L. Edwards, E. Ito, F. W. Taylor, J. Récy, F. Rougerie, P. Joannot & C. Henin, 1992. Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257: 644–647.Google Scholar
  6. Beck, W. T., J. Récy, F. Taylor, R. L. Edwards & G. Cabioch, G., 1997. Abrupt changes in early Holocene tropical sea surface temperature derived from coral records. Nature 385: 705–707.Google Scholar
  7. Beers, J. R., F. M. H. Reid & G. L. Stewart, 1975. Microplankton of the North Pacific Central Gyre. Population structure and abundance, June 1973. Internationale Revue Gesamtes Hydrobiologia 60: 607–638.Google Scholar
  8. Beers, J. R. & G. L. Stewart, 1970. The preservation of acantharians in fixed plankton samples. Limnology and Oceanography 15: 825–827.Google Scholar
  9. Bernstein, R. E., P. R. Betzer, R. A. Feely, R. H. Byrne, M. F. Lamb & A. F. Michaels, 1987. Acantharian fluxes and strontium to chlorinity ratios in the North Pacific Ocean. Science 237: 1490–1494.Google Scholar
  10. Bernstein, R. E., R. H. Byrne, P. R. Betzer & A. M. Greco, 1992. Morphologies and transformations of celestite in seawater: the role of acantharians in strontium and barium geochemistry. Geochimica et Cosmochimica Acta 56: 3272–3279.Google Scholar
  11. Bishop, J. K. B., J. M. Edmond, D. R. Ketten, M. P. Bacon & W. B. Silker, 1977. The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean. Deep-Sea Research 24: 511–548.Google Scholar
  12. Bottazzi, E. M., 1978. Systematic-ecological aspects of Radiolaria with special reference to Acantharia. Bolletino Zoologica 45: 133–144.Google Scholar
  13. Bottazzi, E. M. & M. G. Andreoli, 1978. Distribuzione stagionale degli Acantari e dei Radiolari (Protozoa, Sarcodina) in diverse zone costiere dei mari italiani. L' Ateneo Parmense Acta Naturalia 14: 477–500.Google Scholar
  14. Bottazzi, E. M. & M. G. Andreoli, 1982. Distribution of adult and juvenile Acantharia (Protozoa, Sarcodina) in the Atlantic Ocean. Journal of Plankton Research 4: 757–777.Google Scholar
  15. Bradbury, J. P., B. Leyden, M. Salgado-Laboriau, C. Lewis, C. Schubert, M. Binford, D. Frey, D. Whitehead & F. Weibezahn, 1981. Late Quaternary environmental history of Lake Valencia. Science 214: 1299–1305.Google Scholar
  16. Brass, G. W., 1980. Trace elements in acantharian skeletons. Limnology and Oceanography 25: 146–149.Google Scholar
  17. Brass, G. W. & K. K. Turekian, 1972. Strontium distributions in sea water profiles from the GEOSECS I (Pacific) and GEOSECS II (Atlantic) test stations. Earth and Planetary Science Letters 16: 117–121.Google Scholar
  18. Brass, G. W. & K. K. Turekian, 1973. Stontium and alkalinity variations in the South Pacific. In Fraser, R. (ed.), Oceanography of the South Pacific 1972, New Zealand National Commission for UNESCO, Wellington: 15–18.Google Scholar
  19. Brass, G. W. & K. K. Turekian, 1974. Strontium distribution in GEOSECS oceanic profiles. Earth and Planetary Science Letters 23: 141–148.Google Scholar
  20. Chester, R., 1990. Marine Geochemistry. Unwin Hyman, Boston.Google Scholar
  21. CLIMAP Project Members, 1981. Seasonal reconstruction of the earth's surface during the last glacial maximum. Map and Chart Series, No. 36. Geological Society of America, Boulder.Google Scholar
  22. De Deckker, P., T. Corrège & J. Head, 1991. Late Pleistocene record of eolian activity from tropical northeastern Australia suggesting the Younger Dryas is not an unusual climatic event. Geology 19: 602–605.Google Scholar
  23. de Villiers, S., 1999. Seawater strontium and Sr/Ca variability in the Atlantic and pacific oceans. Earth and Planetary Science Letters 171: 623–634.Google Scholar
  24. de Villiers, S., G. T. Shen & B. K. Nelson, 1994. The Sr/Ca temperature relationship in coralline aragonite: influence of variability in (Sr/Ca) seawater and skeletal growth parameters. Geochimica et Cosmochimica Acta 58: 197–208.Google Scholar
  25. de Villiers, S., B. K. Nelson & A. R. Chivas, 1995. Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures. Science 269: 1247–1249.Google Scholar
  26. Fieux, M., C. Andrié, E. Charriaud, A. G. Ilahude, N. Metzl, R. Molcard & J. C. Swallow, 1996. Hydrological and chlorofluoromethane measurements of the Indonesian Throughflow entering the Indian Ocean. Journal of Geophysical Research 101 (C5): 12,433–12,454.Google Scholar
  27. Guilderson, T. P., R. G. Fairbanks & J. L. Rubenstone, 1994. Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science 263: 663–665.Google Scholar
  28. Martin, J. H. & M. Whitfield, 1983. The significance of river inputs of chemical elements to the ocean system. In Wong, W. S., E. Boyle, K. W. Bruland, J. D. Burton & E. D. Godberg (eds), Trace Metals in Sea Water. Plenum, New York: 265–296.Google Scholar
  29. McCulloch, M. T., M. K. Gagan, G. Mortimer, A. R. Chivas & P. J. Isdale, 1994. A high resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño. Geochimica et Cosmochimica Acta 58: 2747–2754.Google Scholar
  30. McCulloch, M. T., A. W. Tudhope, T. M. Esat, G. E. Mortimer, J. Chappell, B. Pillans, A. R. Chivas & A. Omura, 1999. Coral record of equatorial sea-surface temperatures during the penultimate deglaciation at Huon Peninsula. Science 283: 202–204.Google Scholar
  31. McKenzie, F. T., 1964. Strontium content and variable strontium chlorinity relationship of Sargasso sea water. Science 146: 517–518.Google Scholar
  32. Martinez, J. I., P. De Deckker & A. R. Chivas, 1997. New estimates for salinity changes in the Western Pacific Warm Pool during the Last Glacial Maximum: oxygen-isotope evidence. Marine Micropaleontology 32: 311–340.Google Scholar
  33. Michaels, A. F., 1988. Vertical distribution and abundance of Acantharia and their symbionts. Marine Biology 97: 559–569.Google Scholar
  34. Michaels, A. F., D. A. Caron, N. R. Swanberg, F. A. Howse & C. M. Michaels, 1995. Planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda: abundance, biomass and vertical flux. Journal of Plankton Research 17: 131–163.Google Scholar
  35. Min, G. R., R. L. Edwards, F. W. Taylor, J. Recy, C. D. Gallup & J. W. Beck, 1995. Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochimica et Cosmochimica Acta 59: 2025–2042.Google Scholar
  36. Müller, A. & P. De Deckker, 2003. Magnesium, calcium and strontium in waters of the southern Tasman Sea at the confluence of the Indian, Pacific and Southern Oceans. Marine Freshwater Research 53 (7): 1115–1128.Google Scholar
  37. Renard, M., 1985. Géochimie des carbonates pélagiques. Documents du BRGM 85: 1–650.Google Scholar
  38. Schewiakoff, W. 1926. Die Acantharia. Fauna e Flora del Golfo di Napoli 37: 1–755.Google Scholar
  39. Schrag, D. P., 1999. Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14: 97–102.Google Scholar
  40. Smith, S. V., Buddemeir, R.W., Redalje, R. C. & Houck, J. E., 1979. Strontium-Calcium thermometry in coral skeletons. Science 204: 404–407.Google Scholar
  41. Stoll, H. M. & D. P. Schrag, 1998. Effects of Quaternary sea level cycles on strontium in seawater. Geochimica et Cosmochimica Acta 62: 1107–1118.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Patrick De Deckker
    • 1
  1. 1.Department of Earth and Marine SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations