Advertisement

Hydrobiologia

, Volume 515, Issue 1–3, pp 225–234 | Cite as

Phylogeography of a facultatively migratory dragonfly, Libellulaquadrimaculata (Odonata: Anisoptera)

  • Thomas Artiss
Article

Abstract

The biogeography of a widely distributed dragonfly (Libellula quadrimaculata) was examined via a phylogenetic analysis of 416 bp of the mitochondrial cytochrome oxidase I subunit (COI). Phylogenetic analyses under parsimony and minimum evolution produced trees with similar topologies, and revealed strong support for three clades corresponding to populations in Asia, Europe and North America. However, resolution was poor within clades, and genetic distances between populations within continents was quite low (1–2%). Several populations of this species are known to engage in periodic mass migrations, and it is possible that introgression from gene flow due to the mobility of this species has obscured phylogenetic patterns within continents. I was unable to test for phylogenetic patterns coincident with historical glacial refugia given the lack of phylogenetic patterns within continents. However, given that some sequence divergence was observed between populations within continents, it is possible that phylogenetic patterns exist, and subsequent studies should make use of larger data sets, and molecular data from faster evolving genes. Despite the propensity for periodic, short distance migrations in L. quadrimaculata, gene flow appears to be limited and does not influence the phylogenetic relationships of populations between continents.

Phylogeography migration dragonfly Libellula quadrimaculata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artiss, T., T. R. Schultz, D. A. Polhemus, and C. Simon, 2001. Molecular phylogenetic analysis of the dragonfly genera Libellula, Ladona, and Plathemis (Odonata: Libellulidae) based on mitochondrial cytochrome oxidase I and 16S rRNA sequence data. Molecular Phylogenetics and Evolution 18: 348–361.PubMedGoogle Scholar
  2. Aukema, B., 1995. The evolutionary significance of wing dimorphism in carabid beetles (Coleoptera: Carabidae). Researches on Population Ecology (Kyoto) 37: 105–110.Google Scholar
  3. Bremer, K., 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.Google Scholar
  4. Bremer, K., 1994. Branch support and tree stability. Cladistics 10: 295–304.CrossRefGoogle Scholar
  5. Butlin, R. K., C. Walton, K. A. Monk & J. R. Bridle, 1998. Biogeography of Sulawesi grasshoppers, genus Chitaura, using DNA sequence data. In R. Hall and J. D. Holloway (eds), Biogeography and Geological Evolution of SE Asia. Backhuys Publishers, The Netherlands: 355–359.Google Scholar
  6. Burton, J. F., 1996. Movements of the dragonfly Libellula quadrimaculata Linnæus, 1758 in northwest Europe in 1963. Atalanta 27: 175–187.Google Scholar
  7. Chapco, W., R. A. Kelln, & D. A. McFayden, 1992. Intraspecific mitochondrial DNA variation in the migratory grasshopper, Melanoplus sanguinipes. Heredity 69: 547–557.Google Scholar
  8. Carpenter, J. M., 1988. Choosing among equally parsimonious cladograms. Cladistics 4: 291–296.Google Scholar
  9. Chippindale, P. T., D. H. Whitmore, V. K. Davé, T. G. Valencia & J. V. Robinson, 1998. Effective procedures for the extraction, amplification and sequencing of Odonate DNA. Odonatologica 27: 415–424.Google Scholar
  10. Corbet, P. S., 1999. Dragonflies: Behavior and Ecology of Odonata. Cornell University Press, Itchica: 383–426.Google Scholar
  11. Crandall, K. A. & J. F. Fitzpatrick, Jr., 1996. Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Systematic Biology 45: 1–26.Google Scholar
  12. Crozier, R. H., and Y. C. Crozier, 1993. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133: 97–117.PubMedGoogle Scholar
  13. Dingle, H., 1985. Migration and life histories. In Rankin, M. A. (ed.), Migration: Mechanisms and Adaptive Significance. Contributions to Marine Science 27 (Suppl). Marine Science Institute, University of Texas: 27–42.Google Scholar
  14. Donoghue, M. J., R. G. Olmstead, J. F. Smith, & J. D. Palmer, 1992. Phylogenetic relationships of Dipscales based on rbcL sequences. Annals of the Missouri Botanical Garden 79: 333–345.Google Scholar
  15. Dumont, H. J. & B. O. N. Hinnekint, 1973. Mass migration in dragonflies, especially in Libellula quadrimaculata L.: a review, new ecological approach and a new hypothesis. Odonatologica 2: 1–20.Google Scholar
  16. Eriksson, T., 1998. AutoDecay. Version 4.01. (Program distributed by the author.) Department of Botany, Stockholm University, Stockholm.Google Scholar
  17. Estoup, A., M. Solignac, J.-M. Cornuet, J. Goudet, & A. Scholl, 1996. Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Molecular Ecology 5: 19–31.PubMedGoogle Scholar
  18. Fairbairn, D. J., 1994. Wing dimorphism and the migratory syndrome: correlated traits for migratory tendency in wing dimorphic insects. Researches on Population Ecology (Kyoto) 36: 157–163.Google Scholar
  19. Fairbairn, D. J. & D. A. Roff, 1990. Genetic correlations among traits determining migratory tendency in the sand cricket, Gryllus firmus. Evolution 44: 1787–1795.Google Scholar
  20. Farris, J. S., 1969. A successive approximations approach to character weighting. Systematic Zoology 18: 374–385.Google Scholar
  21. Felsenstein, J., 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17: 368–376.PubMedGoogle Scholar
  22. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  23. Fleischer, R. C., C. E. McIntosh & C. L. Tarr, 1998. Evolution on a volcanic conveyer belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Molecular Ecology 7: 533–545.PubMedGoogle Scholar
  24. Frati, F., C. Simon, J. Sullivan & D. L. Swofford, 1997. Evolution of the mitochondrial cytochrome oxidase II gene in Collembola. Journal of Molecular Evolution 44: 145–158.PubMedGoogle Scholar
  25. Hasegawa, M., H. Kishino & T.-A. Yano, 1985. Dating of the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174.PubMedGoogle Scholar
  26. Hewitt, G. M., 1999. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68: 87–112.Google Scholar
  27. Holder, K., R. Montgomerie & V. L. Freisen, 1999. A test of the glacial refugium hypothesis using patterns of mitochondrial and nuclear DNA sequence variation in rock ptarmigan (Lagopus mutus). Evolution 53: 1936–1950.Google Scholar
  28. Kennedy, C. H., 1922a. The morphology of the penis in the genus Libellula (Odonata). Entomological News 33: 33–40.Google Scholar
  29. Kennedy, C. H., 1922b. The phylogeny and the geographical distribution of the genus Libellula (Odonata). Entomological News 33: 65–71.Google Scholar
  30. Jukes, T. H. & C. R. Cantor, 1969. Evolution of protein molecules. In Munro, H. N. (ed.), Mammalian Protein Metabolism. Academic Press, New York.Google Scholar
  31. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.PubMedGoogle Scholar
  32. Kimura, M., 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, USA 78: 454–458.Google Scholar
  33. Lunt, D. H., D.-X. Zhang, J. M. Szymura & G. M. Hewitt, 1996. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology 5: 153–165.PubMedGoogle Scholar
  34. Lunt, D. H., K. M. Ibrahim & G. M. Hewitt, 1998. mtDNA phylogeography and postglacial patterns of subdivision in the meadow grasshopper Chorthippus parallelus. Heredity 80: 633–641.PubMedGoogle Scholar
  35. MacHugh, D. E., M. D. Shriver, R. T. Loftus, P. Cunningham & D. G. Bradley, 1997. Microsatellite DNA variation and the evolution, domestication and phylogeography of Taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 146: 1071–1086.PubMedGoogle Scholar
  36. Maddison, D. R., 1991. The discovery and importance of multiple islands of most parsimonious trees. Systematic Zoology 40: 315–328.Google Scholar
  37. Mueller, U. G., S. A. Rehner & T. R. Schultz, 1998. The evolution of agriculture in ants. Science 281: 2034–2038.PubMedGoogle Scholar
  38. Needham, J. G. & M. J. Westfall, 1955. The Dragonflies of North America: Libellula. University of California Press, Berkeley.Google Scholar
  39. Orange, D. I., B. R. Riddle & D. C. Nickle, 1999. Phylogeography of a wide-ranging desert lizard, Gambelia wislizenii (Crotaphytidae). Copeia 99: 267–273.Google Scholar
  40. Phillips, A. J. & C. Simon, 1995. Simple, efficient, and nondestructive DNA extraction protocol for arthropods. Annals of the Entomological Society of America 88: 281–283.Google Scholar
  41. Polhemus, D. A. & J. T. Polhemus, 1998. Assembling New Guinea: 40 million years of island arc accretion as indicated by the distributions of aquatic Heteroptera (Insecta). In Hall, R. & J. D. Holloway (eds), Biogeography and Geological Evolution of SE Asia. Backhuys Publishers, Leiden: 1–23.Google Scholar
  42. Posada, D. & K. A. Crandall, 1998. Modeltest: testing models of DNA substitution. Bioinformatics 14: 817–818.CrossRefPubMedGoogle Scholar
  43. Roderick, G. K. & R. G. Gillespie, 1998. Speciation and phylogeography of Hawaiian terrestrial arthropods. Molecular Ecology 7: 519–531.PubMedGoogle Scholar
  44. Rodríguez, F. J., J. L. Oliver, A. Marín & J. R. Medina, 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501.PubMedGoogle Scholar
  45. Russell, R. W., M. L. May, K. L. Soltesz & J. W. Fitzpatrick, 1998. Massive swarm migrations of dragonflies (Odonata) in eastern North America. American Midland Naturalist 140: 325–342.Google Scholar
  46. Saitou, N. & M. Nei, 1987. The neighbor-joining method: A new method for reconstructing trees. Molecular Biology and Evolution 4: 406–425.PubMedGoogle Scholar
  47. Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu & P. Flook, 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87: 651–701.Google Scholar
  48. Slade, R. W. & C. Moritz, 1998. Phylogeography of Bufo marinus from its natural and introduced ranges. Proceedings of the Royal Society of London Series B-Biological Sciences: 769-777.Google Scholar
  49. Steppan, S. J., M. R. Akhverdyan, E. A. Lyapunova, D. G. Fraser, N. N. Vorontsov, R. S. Hoffmann & M. J. Braun, 1999. Molecular phylogeny of the marmots (Rodentia: Sciuridae): tests of evolutionary and biogeographic hypotheses. Systematic Biology 48: 715–734.PubMedGoogle Scholar
  50. Sternberg, K., 1998. The postglacial colonization of Central Europe by dragonflies, with special reference to southwestern Germany (Insecta, Odonata). Journal of Biogeography 25: 319–337.Google Scholar
  51. Sullivan, J., J. A. Markert & C. W. Kilpatrick, 1997. Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Systematic Biology 46: 426–440.PubMedGoogle Scholar
  52. Swofford, D. L., 1999. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  53. Taberlet, P., 1998. Biodiversity at the intraspecific level: the comparative phylogeographic approach. Journal of Biotechnology 64: 91–100.Google Scholar
  54. Taberlet, P., L. Fumagalli, A.-G. Wust-Saucy & J.-F. Cosson, 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7: 453–464.PubMedGoogle Scholar
  55. Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526.PubMedGoogle Scholar
  56. Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.PubMedGoogle Scholar
  57. Vogler, A. P. & R. DeSalle, 1993. Phylogeographic patterns in coastal North American tiger beetles (Cicindela dorsalis Say) inferred from mitochondrial DNA sequences. Evolution 47: 1192–1202.Google Scholar
  58. Waits, L. P., S. L. Talbot, R. H. Ward & G. F. Shields, 1998. Mitochondrial DNA phylogeography of the North American brown bear and implications for conservation. Conservation Biology 12: 408–417.Google Scholar
  59. Walker, E. M. & P. S. Corbet, 1975. The Odonata of Canada and Alaska, Vol. 3. University of Toronto Press, Toronto.Google Scholar
  60. Wenink, P. W., A. J. Baker, H.-U. Rösner & M. G. J. Tilanus, 1996. Global mitochondrial DNA phylogeography of holarctic breeding dunlins (Calidris alpina). Evolution 50: 318–320.Google Scholar
  61. Yang, Z., N. Goldman & A. Friday, 1994. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Molecular Biology and Evolution 11: 316–324.PubMedGoogle Scholar
  62. Zharkikh, A., 1994. Estimation of evolutionary distances between nucleotide sequences. Journal of Molecular Evolution 9: 315–329.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Thomas Artiss
    • 1
  1. 1.Department of BiologyClark UniversityWorcesterU.S.A

Personalised recommendations