Advertisement

Hydrobiologia

, Volume 515, Issue 1–3, pp 161–179 | Cite as

Grazing effects of a freshwater bivalve (Corbicula leana Prime) and large zooplankton on phytoplankton communities in two Korean lakes

  • Soon-Jin Hwang
  • Ho-Sub Kim
  • Jae-Ki Shin
  • Jong-Min Oh
  • Dong-Soo Kong
Article

Abstract

This study examined the effects of a freshwater filter feeding bivalve (Corbicula leana Prime) and large zooplankton (>200 μm, mostly cladocerans and copepods) on the phytoplankton communities in two lakes with contrasting trophic conditions. A controlled experiment was conducted with four treatments (control, zooplankton addition, mussel addition, and both zooplankton and mussel addition), and each established in duplicate 10-l chambers. In both lakes there were significant effects of mussel grazing on phytoplankton density and biomass. The effects were greater in mesotrophic Lake Soyang than in hypertrophic Lake Ilgam. Effects of zooplankton grazing did not differ between these lakes, and zooplankton effects on phytoplankton were much less than the effects of mussels. Although mussels exerted a varying effect on phytoplankton according to their size, mussels reduced densities of almost all phytoplankton taxa. Total mean filtering rate (FR) of mussels in Lake Soyang was significantly greater than that in Lake Ilgam (p=0.002, n=5). Carbon fluxes from phytoplankton to mussels (977–2,379 μgC l−1d−1) and to zooplankton (76–264 μgC l−1 d−1) were always greater in Lake Ilgam due to the greater phytoplankton biomass (p<0.01, n=6). Based on the C-flux to biomass ratios, the mussels consumed 170–754% (avg. 412%) of phytoplankton standing stock in Lake Soyang, and 38–164% (avg. 106%) in Lake Ilgam per day. The C-flux to biomass ratio for mussels within each lake was much greater than for large zooplankton. Mussels reduced total phosphorus concentration by 5–34%, while increasing phosphate by 30–55% relative to the control. Total nitrogen also was reduced (by 9–25%), but there was no noticeable change in nitrate among treatments. The high consumption rate of phytoplankton by Corbicula leana even in a very eutrophic lake suggests that this mussel could affect planktonic and benthic food web structure and function by preferential feeding on small seston and by nutrient recycling. Control of mussel biomass therefore might be an effective tool for management of water quality in shallow eutrophic lakes and reservoirs in Korea.

grazing bivalve zooplankton phytoplankton C-flux food web water quality management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, A. & D. O. Hessen, 1991. Carbon, nitrogen, and phosphorus contents of freshwater zooplankton. Limnology and Oceanography 36: 807–814.Google Scholar
  2. APHA, 1995. Standards Methods for the Examination of Water andWasterwater, 19th edn. American Public Health Association, Washington, D.C.Google Scholar
  3. Cohen, R. R. H., P. V. Dresler, E. J. P. Phillips & R. L. Cory, 1984. The effect of the Asiatic clam, Corbicula fluminea, on phytoplankton of the Potamiac River, Maryland. Limnology and Oceanography 29: 170–180.Google Scholar
  4. Cotner, J. B., W. S. Gardner, J. R. Johnson, R. H. Sada, J. F. Cavaletto & R. T. Heath, 1995. Effects of zebra mussels (Dreissena polymorpha) on bacterioplankton: evidence for both sizeselective consumption and growth stimulation. Journal of the Great Lakes Research 21: 517–528.Google Scholar
  5. Culver, D. A., M. M. Boucherle, D. J. Bean & J. W. Flethcer, 1985. Biomass of freshwater crustacean zooplankton from Length-Weight regressions. Canadian Journal of Fisheries and Aquatic Sciences 42: 1380–1390.Google Scholar
  6. Crowder, L. B., R. W. Drenner, W. C. Kerfoot, D. J. McQueen, E. L. Mills, U. Sommer, C. N. Spencer & M. J. Vanni, 1988. Food web interactions in lakes. In Carpenter, S. R. (ed.), Complex Interactions Lake Communities. Springer-Verlag. New York: 141–160.Google Scholar
  7. Dame, R. F., 1996. Ecology of Marine Bivalves: An Ecosystem Approach. CRC Press, Boca Raton, pp. 254.Google Scholar
  8. Dame, R. F. & N. Dankers, 1988. Uptake and release of materials by a Wadden Sea mussel bed. Journal of Experimental Marine Biology and Ecology 118: 207–216.Google Scholar
  9. Dermott, R. & D. Kerec, 1997. Changes to the deep-water benthos of eastern Lake Erie since the invasion of Dreissena: 1979-1993. Canadian Journal of Fisheries and Aquatic Sciences 54: 922–930.Google Scholar
  10. Dodson, S. I., 1974. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.Google Scholar
  11. Dorgelo, J. & J. W. Smeenk, 1988. Contribution to the ecophysiology of Dreissena polymorpha (Pallas) (Mollusca: Bivalvia): Growth, filtration rate and respiration. Verhandlungen International Vereinigung Limnologie 23: 2202–2208.Google Scholar
  12. Downing, J. A. & F. H. R. Rigler, 1984. A Manual on Methods for the Assessment of Secondary Productivity in Freshwaters. Blackwell Scientific Publications, Oxford, 501 pp.Google Scholar
  13. Dresler, P. V. & R. L. Cory, 1980. The Asiatic clam, Corbicula fluminea (Muller), in the tidal Potomac River, Maryland. Estuaries 3: 150–151.Google Scholar
  14. Fanslow, D. L., T. F. Nalepa & G. A. Lang. 1995, Effects of zebra mussel (Dreissena polymorpha) on natural seston from Saginaw bay, Lake Huron. Journal of the Great Lakes Research 21: 489–500.Google Scholar
  15. Fahnenstiel, G. L., T. B. Bridgeman, G. A. Lang, M. J. McCormick & T. F. Nalepa, 1995. Phytoplankton productivity I Saginaw Bay, Lake Huron: effects of zebra mussel (Dreissena polymorpha) colonization. Journal of the Great Lakes Research 21: 465–475.Google Scholar
  16. Foster-Smith, R. L., 1975. The effect of concentration of suspension on the filtration rate and pseudofaecal production for Mytilus edulis, L., Cerastoderma edule (L.), and Venerupis pullastra. Journal of Experimental Marine Biology and Ecology 17: 1–22.Google Scholar
  17. Gardner, W. S., J. F. Chandler, G. A. Laird & D. Scavia, 1986. Microbial response to amino acid additions in Lake Michigan: grazer control and substate limitation of bacterial populations. Journal of the Great Lakes Research 12: 161–174.Google Scholar
  18. Gardner, W. S., J. F. Cavlatto, T. H Johengen, J. R. Johnson, R. T. Heath & J. B. Cotner, 1995. Effects of zebra mussels, Dreissena polymorpha, on community nitrogen dynamics in Saginaw Bay, Hake Huron. Journal of the Great Lakes Research 21: 529–544.Google Scholar
  19. Hall, D. T., S. T. Threlkeld, C. W. Burns & P. H. Crowley, 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annual Review of Ecology and Systematics 7: 177–208.Google Scholar
  20. Heath, R. T., G. L. Fahnenstiel, W. S. Gardner, J. F. Cavaletto & S-J. Hwang, 1995. Ecosystem-level effects of zebra mussel (Dreissena polymorpha): An enclosure experiment in Saginaw Bay, Lake Huron. Journal of the Great Lakes Research 21: 501–516.Google Scholar
  21. Hill, W. & A. Knight, 1981. Food preference of the Asian clam (Corbicula fluminea) in the Sacramento-San Joaquin delta. Estuaries 4: 245.Google Scholar
  22. Holland, R. E., 1993. Changes in plankton diatoms and water transparency in Hatchery Bay, Bass Island area, western Lake Erie since the establishment of the zebra mussel. Journal of the Great Lakes Research 19: 617–624.Google Scholar
  23. Holland, R. E., T. H. Johengen & A. M. Beeton, 1995. Trends in nutrient concentration in Hatchery Bay, western Lake Erie, before and after Dreissena polymorpha. Canadian Journal of Fisheries and Aquatic Sciences 52: 1202–1209.Google Scholar
  24. Hwang, S-J., 1996. Effects of zebra mussel (Dreissena polymorpha Pallas) on phytoplankton and bacterioplankton: Evidence for size-selective grazing. Korean Journal of Limnology 29: 363–378.Google Scholar
  25. Hwang, S-J. & R. T. Heath, 1997. The distribution of protozoa across a trophic gradient, factors controlling their abundance and importance in the plankton food web. Journal of Plankton Research 19: 491–518.Google Scholar
  26. Jack, J. D. & J. H. Thorp, 2000. Effects of the benthic suspension feeder Dreissena polymorpha on zooplankton in a large river. Freshwater Biology 44: 569–579.Google Scholar
  27. Johengen, T. H., T. F. Nalepa, G. L. Fahnenstiel, G. L. & G. Goudy, 1995. Nutrient changes in Saginaw Bay, lake Huron, after the establishment of the zebra mussel (Dreissena polymorpha). Journal of the Great Lakes Research 21: 449–464.Google Scholar
  28. Johannsson, O. E., R. Dermott, D. M. Graham, H. A. Dhal, E. S. Millard, D. D. Myles, & J. LeBlanc, 1999. Benthic and pelagic secondary production in Lake Erie after the invasion of Dreissena spp. with implications for fish production. Journal of the Great Lakes Research 26: 31–54.Google Scholar
  29. Karatayev, A. Y., L. E. Burkalova & D. K. Pidilla, 1997. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in eastern Europe. Journal of Shellfish Research 16: 187–203.Google Scholar
  30. Kellar, P. E., S. A. Paulson & L. J. Paulson, 1980. Methods for Biological, Chemical and Physical Analyses in Reservoirs. Technical Report, Lake Mead Limnological Research Center, University of Nevada, Las Vegas, 234 pp.Google Scholar
  31. Kim, B. C., K. Choi, C. Kim, U-H. Lee & Y-H. Kim, 2000. Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Research 34: 3495–3504.Google Scholar
  32. Kim, H-S., S-J. Hwang & J-M. Ko, 2003. Evaluation of water quality variation and sediment of a shallow artificial lake (Lake Ilgam) located in the metropolitan area. Korean Journal of Limnology 36: 161–171 (in Korean).Google Scholar
  33. Kown, O. K., 1990. Illustrated Encyclopedia of Fauna and Flora, Vol. 32. Mollusca (I). Ministry of Education, Seoul, Korea.Google Scholar
  34. Lampert, W., W. Flecker, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnology and Oceanography 31: 478–490.Google Scholar
  35. Lavrentyev, P. J., W. S. Gardner, J. F. Cavaletto & C. Beaver, 1995. Effect of zebra mussel on protozoa and phytoplankton from Saginaw Bay, Lake Huron. Journal of the Great Lakes Research 21: 545–557.Google Scholar
  36. Lee, J-S & J-B. Kim, 1997. Systematic study on the genus Corbicula (Bivalvia: Corbiculidae) in Korea. The Korean Journal of Systematic Zoology 13: 233–246 (in Korean).Google Scholar
  37. Loo, L-O & R. Rosenberg, 1989. Bivalve suspension-feeding dynamics and benthic-pelagic coupling in a eutrophicated marine bay. Journal of Experimental Marine Biology and Ecology 130: 253–276.Google Scholar
  38. Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: Spectrophotometric equation. Limnology and Oceanography 12: 343–346.Google Scholar
  39. Lowe, R. L. & R. W. Pillsbury, 1995. Shifts in benthic algal community structure and function following the appearance of zebra mussel (Dreissena polymorpha) in Saginaw Bay, Lake Huron. Journal of the Great Lakes Research 21: 558–566.Google Scholar
  40. Maclsaac, H. J., W. G. Sprules & J. H. Leach, 1991. Ingestion of mall-bodied zooplankton by zebra mussel (Dreissena polymorpoha): can cannibalism on larvae influence population dynamics? Canadian Journal of Fisheries and Aquatic Sciences 48: 2051–2060.Google Scholar
  41. Moore, J.W., 1979. Factors influencing algal consumption and feeding rate in Hereotrissocladius changi (Seather) (Chironomidae: Diptera). Oecologia 40: 219–227.Google Scholar
  42. Mullin, M. M., P. R. Sloan & R. W. Eppley, 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnology and Oceanography 11: 307–311.Google Scholar
  43. Nakamura Y. & F. Kerciku, 2000. Effects of filter-feeding bivalves on the distribution of water quality and nutrient cycling in a eutrophic coastal lagoon. Journal of Marine Systems 26: 209–221.Google Scholar
  44. Nalepa, T. F. & D. W. Schloesser (eds), 1993. Zebra mussels: Biology, impacts, and control. CRC Press, Boca Raton, 810 pp.Google Scholar
  45. Nicholls, K. H. & G. J. Hopkins, 1993. Recent changes in Lake Erie (north shore) phytoplankton: cumulative impacts of phosphorus loading reductions and the zebra mussel introduction. Journal of the Great Lakes Research 19: 637–647.Google Scholar
  46. Noordhius, R., H. Reeders & A. Bij De Vaate, 1992. Filtration rate and pseudofaeces in zebra mussel and their application I water quality management. In Neuman, D. & H. A. Jenner (eds), The Zebra Mussel Dreissena polymorpha, Ecology, Biological Monitoring and First Application in the Water Quality Management. Gustav Fischer, New York, 262 pp.Google Scholar
  47. Pace, M. L. & J. D. Orcutt, 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnology and Oceanography 26: 822–830.Google Scholar
  48. Parson, T. R., M. Takahashi & B. Hagrave, 1984. Biological Oceanographic Processes, 3rd ed. Pergamon Press, Oxford.Google Scholar
  49. Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon:volume ration for marine oligotrichous ciliates from estuarine and coastal water. Limnology and Oceanography 34: 1097–1107.Google Scholar
  50. Reeders, H. H. & A. Bij de Vaate, 1990. Zebra mussel (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200/201: 437–450.Google Scholar
  51. Reeders, H. H. & A. Bij de Vaate, 1992. Bioprocessing of polluted suspended matter from the water column by the zebra mussel (Dreissena polymorpha Pallas). Hydrobiologia 239: 53–63.Google Scholar
  52. Reeders, H. H., A. Bij de Vaate & F. J. Slim, F. J. 1989. The filtration rate of Dreissena polymorpha (Bivalvia) in three Dutch lakes with reference to biological water quality management. Freshwater Biology 22: 133–141.Google Scholar
  53. Shevtsova, L. V., G. A. Zhdanova, V. A. Movchan & A. B. Primak, 1986. Experimental interrelationship between Dreissena and planktonic invertebrates. Hydrobiology Journal 22: 36–39.Google Scholar
  54. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archive Fur Hydrobiologie 106: 433–471.Google Scholar
  55. Soto, D. & G. Mena, 1999. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 171: 65–81.Google Scholar
  56. Sprung, M. & U. Rose, 1988. Influence of food size and food quality of the feeding of the mussel Dreissena polymorpha. Oecologia 77: 526–532.Google Scholar
  57. Statistical Analysis Systems Institute, 1996. SAS/STAT User's Guide, Version, 9. SAS Institute Inc., Cary, North Carolina.Google Scholar
  58. Stemberger, R. S., 1986. The effects of food deprivation, prey density and volume on clearance rates and ingestion rates of Diacyclops thomasi. Journal of Plankton Research 8: 243–251.Google Scholar
  59. Stoecker, D. K. & J. D. Capuzzo, 1990. Predation on protozoa: its importance to zooplankton. Journal of Plankton Research 12: 891–908.Google Scholar
  60. Strathmann, R. R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography 12: 411–418.Google Scholar
  61. Strayer, D. L., L. C. Smith & D. C. Hunter, 1998. Effects of the zebra mussel (Dreissena polymorpha) invasion on the macrobenthos of the freshwater tidal Hudson River. Canadian Journal of Zoology 76: 419–425.Google Scholar
  62. Ten Winkel, E. H. & C. Davids, 1982. Food selection by Dreissena polymorpha Pallas (Mollusca: Bivalvia). Freshwater Biology 12: 533–558.Google Scholar
  63. Vanni, M. J. & J. Temte, 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnology and Oceanography 35: 697–709.Google Scholar
  64. Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses, 2nd edn. Springer-Verlag, New York.Google Scholar
  65. Williamson, C. E., 1987. Predator-prey interactions between omnivorous diaptomid copepods and rotifers: The role of prey morphology and behavior. Limnology and Oceanography 32: 167–177.Google Scholar
  66. Winter, J. E., 1973. The filtration rate of Mytilus edulis and its dependence of on algal concentration, measured by a continuous automatic apparatus. Marine Biology 22: 317–328.Google Scholar
  67. Wright, R. T., R. B. Coffin, C. P. Erising & D. Pearson, 1982. Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton. Limnology and Oceanography 27: 91–98.Google Scholar
  68. Yamamuro, M. & I. Koike, 1993. Nitrogen metabolism of the filter-feeding bivalve Corbicula japonica and its significance in primary production of a brackish lake in Japan. Limnology and Oceanography 38: 997–1007.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Soon-Jin Hwang
    • 1
  • Ho-Sub Kim
    • 1
  • Jae-Ki Shin
    • 1
  • Jong-Min Oh
    • 2
  • Dong-Soo Kong
    • 3
  1. 1.Department of Biological Systems EngineeringKonkuk UniversitySeoulRep. of Korea
  2. 2.Department of Environmental ScienceKyunghee UniversityYonginKorea
  3. 3.Watershed Management Research DivisionNational Institute of Environmental ResearchInchon

Personalised recommendations