Hydrobiologia

, Volume 516, Issue 1–3, pp 313–329 | Cite as

The AQEM multimetric system for the southern Italian Apennines: assessing the impact of water quality and habitat degradation on pool macroinvertebrates in Mediterranean rivers

  • Andrea Buffagni
  • Stefania Erba
  • Marcello Cazzola
  • Joanna Lynn Kemp
Article

Abstract

In accordance with the aims of the E.U. funded AQEM Project, an assessment system module based on aquatic macroinvertebrates was developed for small sized rivers in the southern Apennines (south Italy). Eleven stream sites, impacted to a greater or a lesser extent by organic pollution and/or habitat impairment and chosen to cover the whole degradation gradient present in the geographical area were sampled in three seasons. The samples were collected following a proportional, multihabitat procedure, afterwards considering separately the replicates collected in the depositional (pool) and transport (riffle) areas for the analysis. A PCA multivariate analysis was performed to extract the main axes of variation of the biological community, which resulted in the first axis being strongly correlated to ecological quality. The final assessment module is based on a multimetric system, structured by selecting the best metrics in simulating the first axis gradient. The system considers a total of 15 different metrics, mainly providing information concerning tolerance to pollution, taxa richness, habitat features and trophic structure of the community. In accordance with the WFD requirements, some of these metrics are based on abundance classes of taxa. Depositional and transport units, due to the observed dissimilarity in the structure of their benthic communities, were kept separate during the development of the assessment system to retain this potentially useful information and to clear interpretation of the results. Both `riffle' and `pool' invertebrate data showed clear differences in ecological quality between sites. Nevertheless, the final assessment module is based on the macroinvertebrates inhabiting depositional areas of rivers only, because the metrics for these river units showed a better performance than those examined for the transport river units. The application of the assessment module requires 10 replicates to be quantitatively collected, for a total area of 0.5 m2. In terms of sampling and identification effort, the assessment module shows a good comparability with the standard Italian method presently in use and might thus be easily applied for river sites classification according to the Water Framework Directive in southern Italy. The site classification obtained with the proposed multimetric index shows a very good correspondence with the post-classification based on multivariate analysis.

WFD AQEM South Europe river multimetric macroinvertebrate depositional pool riffle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of a new biological water quality scores system based on macroinvertebrates over a wide range of unpolluted running-water sites. Wat. Res. 17: 333–347.Google Scholar
  2. Balestrini, R., M. Cazzola & A. Buffagni, 2003. Characterizing hydromorphological features of selected Italian rivers: a comparative application of environmental indices. Hydrobiologia, 516: 367–381.Google Scholar
  3. Barbour, M. T., J. Gerritsen, 3G. E. Griffith, R. Frydenborg, E. McCarron, J. S. White & M. L. Bastian, 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. J. N. Am. Benthol. Soc. 15 (2): 185–211.Google Scholar
  4. Barbour, M. T., J. Gerritsen, B. D. Snyder, & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington D.C.Google Scholar
  5. Bargos, T., J. M. Mesanza, A. Basaguren & E. Orive, 1990. Assessing river quality by means of multi factorial methods using macroinvertebrates. A comparative study of main water courses of Biscay. Wat. Res. 24: 1–10.Google Scholar
  6. Belfiore, C., 1983. Guide per il riconoscimento delle specie animali delle acque interne italiane. 24. Efemerotteri (Ephemeroptera). CNR. Ruffo Ed., Verona: 113 pp.Google Scholar
  7. Brabec K., S. Zahrádková, D. Němejcová, P. Pařil, J. Kokeš, J. Jarkovský, 2004. Assessment of organic pollution effect considering differences between lotic and lentic stream habitats. Hydrobiologia 516: 331–346.Google Scholar
  8. Brown, A. V. & P. P. Brussok, 1991. Comparison of benthic invertebrates between riffles and pools. Hydrobiologia 220: 99–108.Google Scholar
  9. Buffagni, A., 1997. Mayfly community composition and the biological quality of streams. In Landolt, P. & M. Sartori (eds), Ephemeroptera & Plecoptera: Biology-Ecology-Systematics, MTL, Fribourg: 235–246.Google Scholar
  10. Buffagni, A. 1999. Pregio naturalistico, qualità ecologica e integrità della comunità degli Efemerotteri (Insecta Ephemeroptera): un indice per la classificazione dei fiumi italiani. Acqua & Aria, 8: 99–107.Google Scholar
  11. Buffagni, A., R. Alber, E. Bielli, S. Erba, J. L. Kemp, M. Cazzola, V. Albrigo, A. Mutschlechner & R. Pagnotta, 2002. Il Progetto AQEM in Italia: aree studiate, metodologia di campionamento e potenziali interazioni con altri settori di indagine. Studi Trentini di Scienze Naturali. Acta Biol. 78 (1): 181–193.Google Scholar
  12. Buffagni, A., G. Crosa, D. M. Harper & J. L. Kemp, 2000. Using macroinvertebrate species assemblages to identify river channel habitat units: an application of the functional habitats concept to a large, unpolluted Italian river (River Ticino, Northern Italy). Hydrobiologia 435: 213–225.Google Scholar
  13. Buffagni, A., J. L. Kemp, S. Erba, C. Belfiore, D. Hering & O. Moog, 2001. A Europe wide system for assessing the quality of rivers using macroinvertebrates: the AQEM project and its importance for southern Europe (with special emphasis in Italy). J. Limnol. 60 (suppl. 1): 39–48.Google Scholar
  14. Buffagni, A. & J. L. Kemp, 2002. Looking beyond the shores of the United Kingdom: addenda for the application of River Habitat Survey in South European rivers. J. Limnol. 61 (2): 199–214.Google Scholar
  15. D. L. 152/99-Decreto Legislativo 11 maggio 1999, n. 152-Disposizioni sulla tutela delle acque dall'inquinamento e recepimento della direttiva 91/271/CEE concernente il trattamento delle acque reflue urbane e della direttiva 91/676/CEE relativa alla protezione delle acque dall'inquinamento provocato dai nitrati provenienti da fonti agricole. Suppl. Ord. n. 101/L alla Gazzetta Ufficiale 29 maggio 1999, no. 124.Google Scholar
  16. Doisy, K. E. & C. F. Rabeni, 2001. Flow conditions, benthic food resources, and invertebrate community composition in a lowgradient stream in Missouri. J. N. Am. Benthol. Soc. 20 (1): 17–32.Google Scholar
  17. E.U., 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L 327, 22.12.2000, 1–72.Google Scholar
  18. Ghetti, P. F., 1986. I macroinvertebrati nell'analisi di qualità dei corsi d'acqua. Provincia Autonoma di Trento, Trento: 105 pp.Google Scholar
  19. Ghetti, P. F., 1995. Indice Biotico Esteso (I.B.E.). Notiziario dei Metodi Analitici. IRSA-CNR, 7 luglio 1995, Roma: 1–24.Google Scholar
  20. Ghetti, P. F., 1997. Indice Biotico Esteso (I.B.E.). I macroinvertebrati nel controllo della qualità degli ambienti di acque correnti. Provincia Autonoma di Trento: 222 pp.Google Scholar
  21. Ghetti, P. F. & G. Bonazzi, 1981. I macroinvertebrati nella sorveglianza ecologica dei corsi d'acqua. Collana del Progetto Finalizzato: Promozione della Qualità dell'Ambiente, CNR AQ/1/127.Google Scholar
  22. Graca, M. A. S. & C. N. Coimbra, 1998. The elaboration of indices to assess biological water quality. A case study.Wat. Res. 32 (2): 380–392.Google Scholar
  23. Helsel, D. R. & R. M. Hirsch, 1992. Statistical Methods in Water Resources. Elsevier, Amsterdam, 522 pp.Google Scholar
  24. Hering, D., A. Buffagni, O. Moog, L. Sandin, M. Sommerhäuser, I. Stubauer, C. Feld, R. K. Johnson, P. Pinto, N. Skoulikidis, P. F. M. Verdonschot & S. Zahrádková, 2003. The development of a system to assess the ecological quality of streams based on macroinvertebrates-design of the sampling programme within the AQEM project. Int. Rev. Hydrobiol. 88: 345–361.Google Scholar
  25. Hering, D., O. Moog, L. Sandin & P. F. M. Verdonschot, 2004. Overview and application of the AQEM assessment system. Hydrobiologia 516: 1–20.Google Scholar
  26. Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant & I. J. Schlosser, 1986. Assessing biological integrity in running waters: A method and its rationale. Special publication 5. Illinois Natural History Survey.Google Scholar
  27. Kerans, B. L. & J. B. Karr, 1994. A Benthic index of biotic integrity (B-IBI) for rivers of the Tennessee valley. Ecol. Appl. 4 (4): 768–785.Google Scholar
  28. Milner, A. M. & M. W. Oswood, 2000. Urbanization gradients in streams of Anchorage, Alaska: a comparison of multivariate and multimetric approaches to classification. Hydrobiologia 422/423: 209–223.Google Scholar
  29. Morais, M., P. Pinto, P. Guilherme, J. Rosado & I. Antunes, 2004. Assessment of temporary streams: the robustness of metric and multimetric indices under different hydrological conditions. Hydrobiologia 516: 229–249.Google Scholar
  30. Nijboer, R. C., R. K. Johnson, P. F. M. Verdonschot, M. Sommerhäuser & A. Buffagni, 2004. Establishing reference conditions for European streams. Hydrobiologia 516: 91–105.Google Scholar
  31. Ofenböck, T., O.Moog, J. Gerritsen & M. Barbour, 2004. A stressor specific multimetric approach for monitoring running waters in Austria using benthic macro-invertebrates. Hydrobiologia 516: 251–268.Google Scholar
  32. Parsons, M. & R. H. Norris, 1996. The effect of habitat specific sampling on biological assessment of water quality using a predictive model. Freshwat. Biol. 36: 419–434.Google Scholar
  33. Peeters, E. T. H. M., J. J. P. Gardeniers & H. H. Tolkamp, 1994. New methods to assess the ecological status of surface waters in The Netherlands Part 1: Running waters. Verh. int. Verein. Limnol. 25: 1914–1916.Google Scholar
  34. Pinto, P., J. Rosado, M. Morais & I. Antunes, 2004. Assessment methodology for southern siliceous basins in Portugal. Hydrobiologia 516: 191–214.Google Scholar
  35. Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid Bioassessment Protocols For Use in Streams And Rivers. Benthic Macroinvertebrates And Fish. U. S. Environmental Protection Agency. Assessment and Watershed protection Division. EPA/444/4-89-001. Washington D.C.Google Scholar
  36. Raven, P. J., T. H. Holmes, F. H. Dawson, P. J. A. Fox, M. Everard, I. R. Fozzard & K. J. Rouen, 1998 a. River Habitat Survey, the physical character of rivers and streams in the UK and Isle of man. River Habitat Survey No. 2, May 1998. The Environment Agency, Bristol, 86 pp.Google Scholar
  37. Raven, P. J., T. H. Holmes, F. H. Dawson, P. J. A. Fox, M. Everard, I. R. Fozzard & K. J. Rouen, 1998 b. River Habitat Quality: the physical characteristics of rivers and streams in the UK and Isle of Man. Report No. 2. Environment Agency, U.K.Google Scholar
  38. Resh, V. H., R. H. Norris & M. T. Barbour, 1995. Design and implementation of rapid bioassessment approaches for water resource monitoring using benthic macroinvertebrates. Aust. J. Ecol. 20: 108–121.Google Scholar
  39. Reynoldson, T. B., K. E. Day & T. Pascoe, 2000. The development of BEAST: a predictive approach for assessing sediment quality in the North American Great Lakes. In Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), Assessing the Biological Quality of Fresh Waters-RIVPACS and Other Tecniques. FBA: 165–180.Google Scholar
  40. Rivosecchi, L., 1984. Ditteri (Diptera). Guide per il riconoscimento delle specie animali delle acque interne italiane. C.N.R., Verona, 28: 177 pp.Google Scholar
  41. Sandin, L., J. Dahl & R. K. Johnson, 2004. Assessing acid stress in Swedish boreal and alpine streams using benthic macroinvertebrates. Hydrobiologia 516: 129–148.Google Scholar
  42. Siligardi, M., S. Bernabei, C. Cappelletti, E. Chierici, F. Ciutti, F. Egaddi, A. Franceschini, B. Maiolini, L. Mancini, M. R. Minciardi, C. Monauni, G. L. Rossi, G. Sansoni, R. Spaggiari & M. Zanetti, 2000. I.F.F. Indice di funzionalità fluviale. Manuale ANPA/2000: 223 pp.Google Scholar
  43. Skoulikidis, N. Th., K. C. Gritzalis, T. Kouvarda & A. Buffagni, 2004. The development of an ecological quality assessment and classification system for Greek running waters based on benthic macroinvertebrates. Hydrobiologia 516: 149–160.Google Scholar
  44. Sladecek, V., 1973. Systems of water quality from the biological point of view. Arch. Hydrobiol. Beiheft 7: 1–217.Google Scholar
  45. Ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of Gradient Analysis. Advances in Ecological Research 18: 271–317.Google Scholar
  46. Ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57 (3): 255–289.Google Scholar
  47. Ter Braak, C. J. F. & P. Smilauer, 1997. CANOCO, Software for Canonical community Ordination (ver. 4.02). Centre for Biometry, Wageningen, The Netherlands.Google Scholar
  48. Ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO Reference Manual and User's Guide to CANOCO for Windows. Centre for Biometry, Wageningen, The Netherlands.Google Scholar
  49. Verdonschot, P. F. M., 2000. Integrated ecological assessment methods as a basis for sustainable catchment management. Hydrobiologia 422/423: 389–412.Google Scholar
  50. Woodiwiss, F. S., 1964. The biological system of stream classification used by the Trent River Board. Chemistry and Industry 14: 443–447.Google Scholar
  51. Wright, J. F., 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Aus. J. Ecol. 20: 181–198.Google Scholar
  52. Zahrádková, S., J. Kokeš, J. Hodovský, D. Vojtíšková, D. Scheibová, Y. Poøízková, J. Schenková & J. Helešic, 2000. Predikèní systém PERLA-Prediction system PERLA. In Rulík, M. (ed.), Limnologie na pøelomu tisíciletí. Sborník referátù XII limnologické konference. Olomouc: Univerzita Palackého: 260–264.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Andrea Buffagni
    • 1
  • Stefania Erba
    • 1
  • Marcello Cazzola
    • 1
  • Joanna Lynn Kemp
    • 1
  1. 1.CNR – IRSA, Water Research InstituteBrugherio (MI)Italy

Personalised recommendations