, Volume 516, Issue 1–3, pp 215–228

Multimetric assessment of data provided by water managers from Germany: assessment of several different types of stressors with macrozoobenthos communities

  • Jürgen Böhmer
  • Claudia Rawer-Jost
  • Armin Zenker


Our study attempted a new approach to biological assessment in Germany that would comply with the requirements of the European Union Water Framework Directive. We developed a multimetric index for use throughout Germany, based on the macrozoobenthos and devised along the guidelines formulated by Karr & Chu (1999). The index contains twelve measures, chosen for their discriminatory power in assessing general impairment as well as specific stressors (e.g., impoundments, acidification, organic or chemical pollution), the inclusion of all meaningful ecological metric categories, interrelationship as low as possible and the feasibility of using them in all geographic stream classes of Germany.

Due to the availability of data over time the method was developed in three steps. In step 1 we studied the stressor specific response of biological attributes to additional stress by comparing each of 162 sites impaired by a known factor with a nearby site, which was morphologically comparable, but impaired to a lesser extent. The resulting list of 17 candidate metrics for a multimetric index was validated in step 2 using a set of model data from our own investigations. This step included data from not or minimally disturbed reference sites and the design of a five-class-scale of human impact to permit the use of dose-response curves, but no differentiation of stream types. The multimetric index IBI 12 was developed using dose-response curves, correlation coefficients and graphical analysis. The index was improved in the third step, calculations for this based on a dataset containing about 4000 macrozoobentos samples from over 900 streams and rivers in Germany, collected by water management authorities and researchers. The final version of the method uses type specific reference conditions, but the same set of 12 metrics for all stream types. This new IBI 12 is suitable to fulfil the requirements of the EU Water Framework Directive. It correlates with a Spearman's R of 0.76 with the general state of impairment for every stream type, and a Spearman's R between 0.6 and 0.87 with the most important specific stressors like sewage or morphological degradation. It proved to correlate higher with those stressors than any single index as yet used in Germany. The stressor specific analysis also substantiated that no single metric was really stressor specific with the exception of an acidity index. Even the well established Saprobic indices responded quite well to other stressors besides organic pollution. The results suggest that a separate assessment of specific stressors might be only possible by analysing the reaction pattern of an array of metrics. Further improvement of the index could be achieved by advances in stream typology and the reference conditions, as well as by a higher degree of standardisation to decrease the scatter caused by variations in sampling season, methodology and determination level.

benthic macroinvertebrates multimetric index assessment stressors Germany 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983, The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running water sites. Wat. Res. 17: 333–347.Google Scholar
  2. Banning, M., 1990, Der Rheo-Index-eine Möglichkeit zur Berechnung der Auswirkungen des Flußstaus auf die benthische Lebensgemeinschaft. Erweiterte Zusammenfassungen der Jahrestagung der DGL: 186–190.Google Scholar
  3. Barbour, M. T., J. Gerritsen, G. E. Griffith, R. Frydenborg, E. McCarron, J. S. White & M. L. Bastian, 1996, A framework for biological criteria for Florida streams using benthic macroinvertebrates. J. N. Am. Benthol. Soc. 15: 185–211.Google Scholar
  4. Bayerisches Landesamt für Wasserwirtschaft (ed.), 1996. Ökologische Typisierung der aquatischen Makrofauna. Informationsberichte 4/96, München, 543 pp.Google Scholar
  5. Biss, R., P. Kübler, I. Pinter & U. Braukmann, 2002. Leitbildbezogenes biozönotisches Bewertungsverfahren für Fließgewässer (aquatischer Bereich) in der Bundesrepublik Deutschland. Ein erster Beitrag zur integrierten ökologischen Fließgewässerbewertung. Umweltbundesamt Texte 62/02, 162 pp.Google Scholar
  6. Böhmer, J., C. Rawer-Jost & B. Kappus, 1999: Ökologische Fließgewässerbewertung. Biologische Grundlagen und Verfahren-Schwerpunkt Makrobenthos. In: Steinberg, C., W. Calmano, H. Klapper & R.D. Wilken (eds), Handbuch Angewandte Limnologie, VIII-7.1. 8. Erg. Lfg.12/99 und 4/00. Loseblattsammlung.Google Scholar
  7. Böhmer, J., B. Kappus, C. Rawer-Jost & C. Bratrich, 1997. De Ökologische Bewertung von Fließgewässern in der Europäischen Union und in anderen Ländern. Literaturstudie. In Landesanstalt für Umweltschutz Baden-Württemberg (ed.), Handbuch Wasser 2, Band 37. 61 pp.Google Scholar
  8. Böhmer, J., A. Zenker, B. Ackermann & B. Kappus, 2001, Macrozoobenthos communities and biocoenotic assessment of ecological status in relation to degree of human impact in small streams in southwest Germany. J. Aquat. Ecosyst. Stress Recov. 8: 407–419.Google Scholar
  9. Braukmann, U., 1987. Zoozönologische und saprobiologische Beiträge zu einer allgemeinen regionalen Bachtypologie. Archiv für Hydrobiologie, Ergebnisse der Limnologie 26, 355 pp.Google Scholar
  10. Braukmann, U., 2001, Stream acidification in South Germany-chemical and biological assessment methods and trends. Aquat. Ecol. 35: 207–232.Google Scholar
  11. Braukmann, U., P. Haase, C. Rawer-Jost, B. Kappus, R. Biss & P. Kübler, 2002. Operationelle Taxaliste des Makrozoobenthos für Fließgewässeruntersuchungen. In: Biss, R., P. Kübler, I. Pinter & U. Braukmann, Leitbildbezogenes biozönotisches Bewertungsverfahren für Fließgewässer (aquatischer Bereich) in der Bundesrepublik Deutschland. Ein erster Beitrag zur integrierten ökologischen Fließgewässerbewertung. Umweltbundesamt Texte 62/02.Google Scholar
  12. Buck, H., 1986. Vergleichende Gewässergütebeurteilung mit Hilfe der Kopplungsanalyse unter Verwendung statistischer Parameter. Münchner Beiträge zur Abwasser-, Fischerei-und Flussbiologie 40: 117–134.Google Scholar
  13. Camargo, J. A., 1990, Performance of a new ecotoxilogical index to assess environmental impacts on freshwater communities. Bull. envir. Contam. Toxicol. 44: 529–534.Google Scholar
  14. DIN 38410, 1992: Biologisch-ökologische Gewässergüteuntersuchung: Bestimmung des Saprobienindex (M2). In: Deutsches Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung. VCH Verlagsgesellschaft mbH, Weinheim. Loseblattsammlung.Google Scholar
  15. European Union, 2000, Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for community action in the field of water policy. Official J. Eur. Comm. L327: 1–72.Google Scholar
  16. Hay, C. J., B. J. van Zyl & G. J. Steyn, 1996, A quantitative assessment of the biotic integrity of the Okavango River, Namibia, based on fish. Water SA 22: 263–284.Google Scholar
  17. Hughes, R. M. & D. P. Larsen, 1988. Ecoregions: an approach to surface water protection. J. Wat. Pollut. Cont. Fed. 60: 486–493.Google Scholar
  18. Hughes, R. M., P. R. Kaufmann, A. T. Herlihy, T. M. Kincaid, L. Reynolds, and D. P. Larsen. 1998. A process for developing and evaluating indices of fish assemblage integrity. Can. J. Fish. aquat. Sci. 55: 1618–1631.Google Scholar
  19. Hynes, H. B. N., 1970. The Ecology of Running Waters. Liverpool University Press, Liverpool, 555 pp.Google Scholar
  20. Karr, J.R., 1999, Defining and measuring river health. Freshwat. Biol. 41: 221–234.Google Scholar
  21. Karr, J. R. & E. W. Chu, 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington D.C., 206 pp.Google Scholar
  22. Merritt, R. W. & K. W. Cummins, 1996. Trophic relations of macroinvertebrates: In F. R. Hauer & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press Inc., San Diego: 453–474.Google Scholar
  23. Moog, O. (ed.), 1995. Fauna Aquatica Austriaca. Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft. Wien, Loseblattsammlung.Google Scholar
  24. Lyons, J., S. Navarro-Perez, P. A. Cochran, C. E. Santana & M. Guzman-Arroyo, 1995, Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in West-Central Mexico. Cons. Biol. 9: 569–584.Google Scholar
  25. Mühlenberg, F., 1993. Freilandökologie. UTB für Wissenschaft, 512 pp.Google Scholar
  26. Norris, R. H. & C. P. Hawkins, 2000, Monitoring river health. Hydrobiologia 435: 5–17.Google Scholar
  27. Oberdorff, T. & R. M. Hughes, 1992, Modification of an index of biotic integrity based on fish assemblages to characterize rivers of the Seine Basin, France. Hydrobiologia 228: 117–130.Google Scholar
  28. Rawer-Jost, C., 2001. Eignung und Variabilität von Verfahren zur ökologischen Bewertung von Fließgewässern im Mittelgebirge auf der Basis autökologischer Kenngrößen des Makrozoobenthos. Dissertation aus dem Institut für Zoologie der Universität Hohenheim. Berichte aus der Biologie. Shaker Verlag Aachen, 147 pp.Google Scholar
  29. Rawer-Jost, C., J. Böhmer, J. Blank & H. Rahmann, 2000, Macroinvertebrate functional feeding group methods in ecological assessment. Hydrobiologia 422/423: 225–232.Google Scholar
  30. Schmedtje, U., M. Sommerhäuser, U. Braukmann, E. Briem, P. Haase & D. Hering, 2000. Die wichtigsten biozönotisch relevanten Fließgewässertypen im Sinne der Wasserrahmenrichtlinie. Arbeitshilfe zur Umsetzung der EG-Wasserrahmenrichtlinie. Stand 22.November 2000. http://www.lawa.de/deutsch/pubs/arbeitshilfe.htmGoogle Scholar
  31. Schweder, H., 1990. Neue Indizes für die Bewertung des ökologischen Zustandes von Fließgewässern, abgeleitet aus der Makroinvertebraten-Ernährungstypologie. In Friedrich, G. & J. Lacombe (eds), Ökologische Bewertung von Fließgewässern, Limnologie aktuell 3. G. Fischer Verlag, Stuttgart: 353–377.Google Scholar
  32. Shannon, C. E., & W. Weaver, 1949. The Mathematical Theory of Communication. Urbana IL: University of Illinois Press, urbana, IL.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jürgen Böhmer
    • 1
  • Claudia Rawer-Jost
    • 1
  • Armin Zenker
    • 1
  1. 1.Institute for ZoologyUniversity of HohenheimStuttgartGermany

Personalised recommendations