Hydrobiologia

, Volume 516, Issue 1–3, pp 107–127 | Cite as

A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types

  • Armin Lorenz
  • Daniel Hering
  • Christian K. Feld
  • Peter Rolauffs
Article

Abstract

We developed a new Multimetric Index for stream assessment, which is mainly focussed on the impact of hydromorphological degradation on the macroinvertebrate fauna. The index was developed for five German stream types, three of which are located in the lowlands of Northern Germany and two in the lower mountainous areas. For each stream type sites representing different stages of hydromorphological degradation were investigated; the macroinvertebrate fauna of each site was sampled two or three times in 2000 (83 sites and 174 samples altogether). In addition, more than 200 parameters describing the hydromorphology of the sites have been recorded.

The assessment system was developed separately for each of the stream types. The development process included (1) the generation of a new index (`German Fauna Index'), (2) the selection of faunal metrics, which correlate to hydromorphological degradation and (3) the combination of the selected metrics into a Multimetric Index. To correlate faunal metrics and hydromorphological degradation, a `Structure Index' describing the alteration of stream morphology was generated. A correlation matrix of the selected metrics and the structure index is presented.

The `German Fauna Index' is based on taxa, which predominantly occur at sites of a certain morphological degradation class. The selection process of taxa included in the new index was in a first step based on data sampled in this study and supplemented by literature data.

For one stream type (mid-sized mountain streams) the process of metric selection and validation is described in detail, including a correlation matrix of the metrics and a validation of the metrics with data on additional sampling sites.

ecological quality stream assessment German Fauna Index Multimetric Index AQEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AFNOR, 1985. Essais des eaux. Détermination de l'indice bilogique global (IBG). Association Francaise de Normalisation.Google Scholar
  2. Alba-Tercedor, J. & A. Sanchez-Ortega, 1988. Un metodo rapido y simple para evaluar la calidad biologica de las aguas corrientes basado en el de Hellawell (1978). Limnetica 4: 51–56.Google Scholar
  3. Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Wat. Res. 17: 333–347.Google Scholar
  4. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1998. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish (2nd edn). EPA/841/B/98-010 U.S. Environmental Protection Agency Office of Water, Washington, D.C.Google Scholar
  5. Beisel, J.-N., P. Usseglio-Polatera, S. Thomas & J.-C. Moreteau, 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 398: 73–88.Google Scholar
  6. Birk, S. & D. Hering, 2002. Waterview Web-Database: a comprehensive review of European assessment methods for rivers. FBA news 20 (winter 2002): 4.Google Scholar
  7. Brabec, K., S. Zahrádková, D. Němejcová, P. Pařil, J. Kokeš & J. Jarkovský, 2004. Assessment of organic pollution effect considering differences between lotic and lentic stream habitats. Hydrobiologia 516: 333–346.Google Scholar
  8. Braukmann, U., 2000. Hydrochemische und biologische Merkmale regionaler Bachtypen in Baden-Württemberg. Landesanstalt für Umweltschutz Baden-Württemberg, Oberirdische Gewässer, Gewässerökologie 56, 501 pp.Google Scholar
  9. Brookes, A., 1987. The distribution and management of channelized streams in Denmark. Regul. Rivers: Res. Mgmt. 1: 3–16.Google Scholar
  10. Brunke, M., A. Hoffmann & M. Pusch, 2001. Use of mesohabitatspecific relationships between flow velocity and river discharge to assess invertebrate minimum flow requirements. Regul. Rivers Res. Mgmt. 17: 667–676.Google Scholar
  11. Buffagni, A., S., Erba, M. Cazzola & J. L. Kemp, 2004. The AQEM multimetric system for the southern Italian Apennines: assessing the impact of water quality and habitat degradation on pool macroinvertebrates in Mediterranean rivers. Hydrobiologia 516: 313–329.Google Scholar
  12. Buffagni, A., J. L. Kemp, S. Erba, C. Belfiore, D. Hering & O. Moog, 2001. A Europe-wide system for assessing the quality of rivers using macroinvertebrates: the AQEM project and its importance for southern Europe (with special emphasis on Italy). J. Limnol. 60 (Suppl. 1): 39–48.Google Scholar
  13. Bunn, S. E., P. M. Davies & T. D. Mosisch, 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwat. Biol. 41: 333–345.Google Scholar
  14. Chessman, B. C. & P. K. McEnvoy, 1998. Towards diagnostic biotic indices for river macroinvertebrates. Hydrobiologia 364: 169–182.Google Scholar
  15. de Pauw, N. & G. Vanhooren, 1983. Method of biological quality assessment of watercourses in Belgium. Hydrobiologia 100: 153–168.Google Scholar
  16. DEV (Deutsches Institut für Normung e.V.), 1992. Biologischökologische Gewässergüteuntersuchung: Bestimmung des Saprobienindex (M2). In Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung. VCH Verlagsgesellschaft mbH, Weinheim: 1–13.Google Scholar
  17. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67: 345–366.Google Scholar
  18. Ehlert, T., D. Hering, U. Koenzen, T. Pottgiesser, H. Schuhmacher & G. Friedrich, 2002. Typology and type specific reference conditions for medium-sized and large rivers in Northrhine-Westphalia: Methodical and biological aspects. Int. Rev. Hydrobiol. 87: 151–163.Google Scholar
  19. Feld, C. K., 2004. Identification and measure of hydromorphological degradation in Central European lowland streams. Hydrobiologia 516: 69–90.Google Scholar
  20. Feld, C. K., E. Kiel & M. Lautenschläger, 2002. The indication of morphological degradation of streams and rivers using Simuliidae. Limnologica 32: 273–288.Google Scholar
  21. Fore, L. S., J. R. Karr & R. W. Wisseman, 1996. Assessing invertebrate responses to human activities: Evaluating alternative approaches. J. N. Am. Benthol. Soc. 15: 212–231.Google Scholar
  22. Frenz, C. & D. Hering, 1999. Wiederherstellung der Durchgängigkeit der Lenne. Märkischer Kreis (ed.), Lüdenscheid, 124 pp.Google Scholar
  23. Haybach, A., 1998. Die Eintagsfliegen (Insecta: Ephemeroptera) von Rheinland-Pfalz-Zoogeographie, Faunistik, Ökologie, Taxonomie und Nomenklatur. Dissertation Mainz, 417 pp.Google Scholar
  24. Henrikson, L. & M Medin, 1986. Biologisk bedömning av försurningspåverkan på Lelångens tillflöden och grundområden 1986. Aquaekologerna, Rapport till länsstyrelsen i Älvsborgs län.Google Scholar
  25. Hering, D., A. Buffagni, O. Moog, L. Sandin, M. Sommerhäuser, I. Stubauer, C. Feld, R. K. Johnson, P. Pinto, N. Skoulikidis, P. F. M. Verdonschot & S. Zahrádková, 2003. The development of a system to assess the ecological quality of streams based on macroinvertebrates-design of the sampling programme within the AQEM project. Int. Rev. Hydrobiol. 88: 345–361.Google Scholar
  26. Hering, D., O. Moog, L. Sandin & P. F. M. Verdonschot, 2004. Overview and application of the AQEM assessment system. Hydrobiologia 516: 1–20.Google Scholar
  27. Hering, D., M. Gerhard, E. Kiel, T. Ehlert & T. Pottgiesser, 2001. Review study on near-natural conditions of Central European mountain streams with particular reference to debris and beaver dams-results of the 'REG meeting' 2000. Limnologica 31: 81–92.Google Scholar
  28. Hering, D., J. Kail, S. Eckert, M. Gerhard, E. I. Meyer, M. Mutz, M. Reich & I. Weiß, 2000. Coarse woody debris quantity and distribution in Central European streams. Int. Rev. Hydrobiol. 85: 5–23.Google Scholar
  29. Hessisches Ministerium für Umwelt, Landwirtschaft und Forsten, 2000. Gewässerstrukturgüte in Hessen 1999. Hessisches Ministerium für Umwelt, Landwirtschaft und Forsten, Wiesbaden 52 pp.Google Scholar
  30. Hoffmann, A. & D. Hering, 2000. Wood-associated macroinvertebrate fauna in Central European streams. Internat. Rev. Hydrobiol. 85: 25–48.Google Scholar
  31. Illies, J., (ed.), 1978. Limnofauna Europaea. Gustav Fischer Verlag, Stuttgart, 532 pp.Google Scholar
  32. Karr, J. R., 1994. Biological Monitoring: Challenges for the Future. In Loeb, S. L. & A. Spacie (eds), Biological Monitoring of Aquatic Systems. CRC Press LLC, Boca Raton, Florida.Google Scholar
  33. Karr, J. R. & E. W. Chu, 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, DC, 220 pp.Google Scholar
  34. Kemp, J. L., D. M. Harper & G. A. Crosa, 1999. Use of 'functional habitats' to link ecology with morphology ad hydrology in river rehabilitation. Aquat. Cons. Mar. Freshw. Ecosyst. 9: 159–178.Google Scholar
  35. Kokes, J., D. Vojtiskova, M. Pavonic, S. Zahradkova & Y. Porizkova, 2001. Predikcní modely rícních ekosystému (Prediction Models for River Ecosystems). Report of the grant No. 510/7/99 of the Council of the Government of the Czech Republic for Research and Development, T.G.M. Water Research Institute Prague.Google Scholar
  36. LAWA (Länderarbeitsgemeinschaft Wasser), 2001. Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland-Verfahren für kleine und mittelgroße Fließgewässer. LAWA Publikationen 'Oberirdische Gewässer und Küstengewässer', ISBN 3-88961-233-4-227-x.Google Scholar
  37. LUA NRW (Landesumweltamt Nordrhein-Westfalen) (ed.), 1999a. Referenzgewässer der Fließgewässertypen Nordrhein-Westfalens. Teil I: Kleine bis mittelgroße Fließgewässer. LUA-Merkblätter 16, 235 pp.Google Scholar
  38. LUA NRW (Landesumweltamt Nordrhein-Westfalen) (ed.), 1999b. Leitbilder für kleine bis mittelgroße Fließgewässer in Nordrhein-Westfalen. Gewässerlandschaften und Fließgewässertypen. LUA-Merkblätter 17, 88 pp.Google Scholar
  39. LUA NRW (Landesumweltamt Nordrhein-Westfalen) (ed.), 2000. Referenzgewässer der Fließgewässertypen Nordrhein-Westfalens. Teil 2: Mittelgroße bis große Fließgewässer, Gewässerabschnitte und Referenzstrukturen. LUA-Merkblätter 29, 247 pp.Google Scholar
  40. LUA NRW (Landesumweltamt Nordrhein-Westfalen) (ed.), 2001. Leitbilder für die mittelgroßen bis großen Fließgewässer in Nordrhein-Westfalen-Flusstypen. LUA-Merkblätter 24, 132 pp.Google Scholar
  41. Maddock, I., 1999. The importance of physical habitat assessment for evaluating river health. Freshwat. Biol. 41: 373–391.Google Scholar
  42. Marchant, R. & G. Hehir, 2002. The use of AUSRIVAS predictive models to assess the response of lotic macroinvertebrates to dams in south-east Australia. Freshwat. Biol. 47: 1033–1050.Google Scholar
  43. Mebane, C. A., 1999. Testing bioassessment metrics: Macroinvertebrate, sculpin and salmonid responses to stream habitat, sediment, and metals. Envir. Monitor. Assess. 67: 293–322.Google Scholar
  44. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic insects of North America, 3rd edn. Kendall/Hunt Publishing Company, Dubuque, 876 pp.Google Scholar
  45. Moog, O. (ed.), 1995. Fauna Aquatica Austriaca-A Comprehensive Species Inventory of Austrian Aquatic Organisms with Ecological Data, 1st edn.Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft, Wien.Google Scholar
  46. Moog, O., A. Chovanec, J. Hinteregger & A. Römer, 1999. Richtlinie zur Bestimmung der saprobiologischen Gewässergüte von Fließgewässern. Bundesministerium für Land-und Forstwirtschaft, Wien.Google Scholar
  47. Ofenböck, T., O.Moog, J. Gerritsen & M. Barbour, 2004. A stressor specific multimetric approach for monitoring running waters in Austria using benthic macro-invertebrates. Hybrodiologia 516: 251–268.Google Scholar
  48. Paasavirta, L., 1990. The macrozoobenthos studies in the upper part of the Vanajavesi catchment area in the years of 1985 and 1988, with a comparison to earlier data. Ass. Wat. Poll. Control (the Kokemaenjoki river) Publ. 225: 1–24.Google Scholar
  49. Reynoldson, T. B., R. H. Norris, V. H. Resh, K. E. Day & D. M. Rosenberg, 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J. N. Am. Benthol. Soc. 16: 833–852.Google Scholar
  50. Resh, V. H. & D. M. Rosenberg, 1993. Introduction to Freshwater Biomonitoring and Benthic Macroinvertebrates. In Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, 512 pp.Google Scholar
  51. Rutt, G. P., N. S. Weatherley & S. J. Ormerod, 1990. Relationships between the physicochemistry and macroinvertebrates of British upland streams: the development of modelling and indicator systems for predicting fauna and detecting acidity. Freshwat. Biol. 24: 463–480.Google Scholar
  52. Sandin, L., J. Dahl & R. K. Johnson, 2004. Assessing acid stress in Swedish boreal and alpine streams using benthic macroinvertebrates. Hydrobiologia 516: 129–148.Google Scholar
  53. Schmedtje, U. & M. Colling, 1996. Ökologische Typisierung der aquatischen Makrofauna. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 4/96.Google Scholar
  54. Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. The University of Illinois Press, Urbana, IL.Google Scholar
  55. Skriver, J., N. Friberg & J. Kirkegaard, 2000. Biological assessment of running waters in Denmark: Introduction of the Danish Stream Fauna Index (DSFI). Verh. Int. Verein. Limnol. 27: 1822–1830.Google Scholar
  56. Sommerhäuser, M., 1998. Limnologisch-typologische Untersuchungen zu sommertrockenen und permanenten Tieflandbächen am Beispiel der Niederrheinischen Sandplatten. Dissertation Essen, 256 pp.Google Scholar
  57. Sponseller, R. S., E. F. Benfield & H.M. Valett, 2001. Relationships between land use, spatial scale, and stream macroinvertebrate communities. Freshwat. Biol. 46: 1409–1424.Google Scholar
  58. Verdonschot, P. F. M. & R. C. Nijboer, 2002. A decision support system for stream restoration in the Netherlands. An overview of restoration projects and future needs. Hydrobiologia 478: 131–148.Google Scholar
  59. Ward, J. V. & J. A. Stanford, 1979. Ecological factors controlling stream zoobenthos with emphasis on thermal modification of regulated streams. In Ward, J. V. & J. A. Stanford (eds), The Ecology of Regulated Streams. Plenum, New York: 35–55.Google Scholar
  60. Wright, J. F., M. T. Furse & P. D. Armitage, 1993. RIVPACS-a technique for evaluating the biological quality of rivers in the U.K. Wat. Res. 3: 15–25.Google Scholar
  61. Zelinka, M. & P. Marvan, 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fließender Gewässer. Arch. Hydrobiol. 57: 389–407.Google Scholar
  62. Zettler, M. L., 1999. Zur Verbreitung und Ökologie der Groß-, Dreikant-und Kugelmuscheln in acht Fließgewässern Mecklenburg-Vorpommerns. Heldia 4: 21–32.Google Scholar
  63. Zwick, P., 1992. Stream habitat fragmentation-a threat to biodiversity. Biodiv. Cons. 1: 80–97.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Armin Lorenz
    • 1
  • Daniel Hering
    • 1
  • Christian K. Feld
    • 1
  • Peter Rolauffs
    • 1
  1. 1.Department of Ecology, Faculty of HydrobiologyUniversity of EssenEssenGermany

Personalised recommendations