, Volume 518, Issue 1–3, pp 47–57 | Cite as

The importance of hyporheic sediment respiration in several mid-order Michigan rivers: comparison between methods in estimates of lotic metabolism

  • D.G. Uzarski
  • C.A. Stricker
  • T.M. Burton
  • D.K. King
  • A.D. Steinman


Metabolism was measured in four Michigan streams, comparing estimates made using a flow-through chamber designed to include the hyporheic zone to a 20 cm depth and a traditional closed chamber that enclosed to a 5 cm depth. Mean levels of gross primary productivity and community respiration were consistently greater in the flow-through chamber than the closed chamber in all streams. Ratios of productivity to respiration (P/R) were consistently greater in the closed chambers than the flow-through chambers. P/R ratios were consistently <1 in all streams when estimated with flow-through chambers, suggesting heterotrophic conditions. Maintenance of stream ecosystem structure and function therefore is dependent on subsidies either from the adjacent terrestrial system or upstream sources. Our results suggest that stream metabolism studies that rely on extrapolation of closed chambers to the whole reach will most likely underestimate gross primary productivity and community respiration.

stream metabolism gross primary productivity community respiration hyporheic zone P/R ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA, 1985. Standard Methods for the Examination of Water and Wastewater, 15th edn. American Public Health Association, Washington, D.C.: 1134 pp.Google Scholar
  2. Baker, M. A., C. N. Dahm & H. M. Valett, 2000. Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81: 3133–3148.Google Scholar
  3. Battin, T. J., 2000. Hydrodynamics is a major determinant of streambed biofilm activity: from the sediment to the reach scale. Limnology and Oceanography 45: 1308–1319.Google Scholar
  4. Bott, T. L., J. T. Brock, A. Baattrup-Pedersen, P. A. Chambers, W. K. Dodds, K. T. Himbeault, J. R. Lawrence, D. Planas, E. Snyder & G. M. Wolfaardt, 1997. An evaluation of techniques for measuring periphyton metabolism in chambers. Canadian Journal of Fisheries and Aquatic Sciences 54: 715–725.Google Scholar
  5. Bott, T. L., J. T. Brock, C. E. Cushing, S. V. Gregory, D. King & R. C. Petersen, 1978. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia 60: 3–12.Google Scholar
  6. Bott, T. L., J. T. Brock, C. S. Dunn, R. J. Naiman, R.W. Ovink & R. C. Petersen, 1985. Benthic community metabolism in four temperate stream systems: an inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123: 3–45.Google Scholar
  7. Boulton, A., 2000. The subsurface macrofauna. In Jones, J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, New York: 337–361.Google Scholar
  8. Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.Google Scholar
  9. Cummins, K. W., J. R. Sedell, F. J. Swanson, G. W. Minshall, S. G. Fisher, C. E. Cushing, R. C. Peterson & R. L. Vannote, 1983. Organic matter budgets for stream ecosystems: problems in their evaluation. In Barnes, J. R. & G. W. Minshall (eds), Stream Ecology: Application and Testing of General Ecological Theory. Plenum Press, New York: 299–353.Google Scholar
  10. Dodds, W. K., 1989. Photosynthesis of two morphologies of Nostoc parmelioides (Cyanobacteria) as related to current velocities. Journal of Phycology 25: 258–262.Google Scholar
  11. Dodds, W. K. & J. Brock, 1998. A portable flow chamber for insitu determination of benthic metabolism. Freshwater Biology 39: 49–59.Google Scholar
  12. Dole-Olivier, M.-J., P. Marmonier & J.-L. Beffy, 1997. Reponse of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology 37: 257–276.Google Scholar
  13. Duff, J. H. & F. J. Triska, 1990. Denitrification in sediments from the hyporheic zone adjacent to a small forested stream. Canadian Journal of Fisheries and Aquatic Sciences 47: 1140–1147.Google Scholar
  14. Ellis, B. K. & J. A. Stanford, 1998. Microbial assemblages and production in alluvial aquifers of the Flathead River, Montana, USA. Journal of the North American Benthological Society 17: 382–402.Google Scholar
  15. Fetter, C. W., 1994. Applied Hydrogeology, 3rd edn. Prentice-Hall Inc., Englewood Cliff, NJ.Google Scholar
  16. Findlay, S., 1995. Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnology and Oceanography 40: 159–164.Google Scholar
  17. Findlay, S., D. Strayer, C. Goumbala & K. Gould, 1993. Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnology and Oceanography 38: 1493–1499.Google Scholar
  18. Ford, T. E. & R. J. Naiman, 1989. Groundwater-surface water relationships in boreal forest watersheds: dissolved organic carbon and inorganic nutrient dynamics. Canadian Journal of Fisheries and Aquatic Sciences 46: 41–49.Google Scholar
  19. Fuss, C. L. & L. A. Smock, 1996. Spatial and temporal variation of microbial respiration rates in a blackwater stream. Freshwater Biology 36: 339–349.Google Scholar
  20. Grimm, N. B. & S. G. Fisher, 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111: 219–228.Google Scholar
  21. Hall, C. A. S., 1972. Migration and metabolism in a temperate stream ecosystem. Ecology 53: 585–604.Google Scholar
  22. Hakenkamp, C. C. & M. A. Palmer, 2000. The ecology of hyporheic meiofauna. In Jones, J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, New York: 307–336.Google Scholar
  23. Hedin, L. O., 1990. Factors controlling sediment community respiration in woodland stream ecosystems. Oikos 57: 94–105.Google Scholar
  24. Hendricks, S. P. & D. S. White, 1991. Physicochemical patterns within a hyporheic zone of northern Michigan river, with comments on surface water patterns. Canadian Journal of Fisheries and Aquatic Sciences 48: 1645–1654.Google Scholar
  25. Hendricks, S. P. & D. S. White, 1995. Seasonal biogeochemical patterns in surface water, subsurface water, subsurface hyporheic, and riparian ground water in a temperate stream ecosystem. Archiv für Hydrobiologie 134: 459–490.Google Scholar
  26. Horner, R. R., E. B. Welch, M. R. Seeley & J. M. Jacoby, 1990. Response of periphyton to changes in current velocity, suspended sediment and phosphorous concentration. Freshwater Biology 24: 215–232.Google Scholar
  27. Hynes, H. B. N., 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99.Google Scholar
  28. Jones, J. B., S. G. Fisher & N. B. Grimm, 1995. Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology 76: 942–952.Google Scholar
  29. Jones, J. B. & R. M. Holmes, 1996. Surface-subsurface interactions in stream ecology. Trends in Ecology and Evolution 11: 239–242.Google Scholar
  30. Jones, J. B. & P. J. Mulholland, 2000. Streams and Ground Waters. Academic Press, New York, NY.Google Scholar
  31. Marzolf, E. R., P. J. Mulholland & A. D. Steinman, 1994. Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences 51: 1591–1599.Google Scholar
  32. McDiffett, W. F., A. E. Carr & D. L. Young, 1972. An estimate of primary productivity in a Pennsylvania trout stream using a diurnal oxygen curve technique. The American Midland Naturalist 87: 564–570.Google Scholar
  33. Minshall, G. W., 1978. Autotrophy in stream ecosystems. BioScience 28: 767–771.Google Scholar
  34. Morrice, J. A., H. M. Valett, C. N. Dahm & M. E. Campana, 1997. Alluvial characteristics, groundwater-surface water exchange and hydrologic retention in headwater streams. Hydrological Processes 11: 253–267.Google Scholar
  35. Mulholland, P. J., E. R. Marzolf, J. R. Webster, D. R. Hart & S. P. Hendricks, 1997. Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams. Limnology and Oceanography 42: 443–451.Google Scholar
  36. Naegeli, M. W. & U. Uehlinger, 1997. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed river. Journal of the North American Benthological Society 16: 794–804.Google Scholar
  37. Naegeli, M. W., U. H. Hartmann, E. I. Meyer & U. Uehlinger, 1995. POM-dynamics and community respiration in the sediments of a floodprone prealpine river (Necker, Switzerland). Archiv für Hydrobiologie 133: 339–347.Google Scholar
  38. Odum, H. T., 1956. Primary production in flowing waters. Limnology and Oceanography 1: 102–117.Google Scholar
  39. Pusch, M., 1996. The metabolism of organic matter in the hyporheic zone of a mountain stream, and its spatial distribution. Hydrobiologia 323: 107–118.Google Scholar
  40. Pusch, M. & J. Schwoerbel, 1994. Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Archiv für Hydrobiologie 130: 35–52.Google Scholar
  41. Sobczak, W. V. & S. Findlay. 2002. Variation in bioavailability of dissolved organic carbon among stream hyporheic flowpaths. Ecology 83: 3194–3209.Google Scholar
  42. Stanford, J. R. & J. V. Ward, 1993. An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. Journal of the North American Benthological Society 12: 48–60.Google Scholar
  43. Thibodeaux, L. J. & J. D. Boyle, 1987. Bedform-generated convective transport in bottom sediment. Nature 325: 341–343.Google Scholar
  44. Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989. Retention and transport of nutrients in a thirdorder stream in Northwestern California: hyporheic processes. Ecology 70: 1893–1905.Google Scholar
  45. Triska, F. J., J. H. Duff & R. J. Avanzino, 1990. Influence of exchange flow between the channel and hyporheic zone on NO3- production in a small mountain stream. Canadian Journal of Fisheries and Aquatic Sciences 11: 2099–2111.Google Scholar
  46. Uehlinger, U. & J. T. Brock, 1991. The assessment of river periphyton metabolism: a method and some problems. In Whitton, B. A., E. Rott, & G. Friedrich (eds), Use of Algae for Monitoring Rivers. Institut für Botanik, University of Innsbruck, Innsbruck, Austria: 175–181.Google Scholar
  47. Uzarski, D. G., T. M. Burton & C. A. Stricker, 2001. A new chamber design for measuring community metabolism in a Michigan stream. Hydrobiologia 455: 137–155.Google Scholar
  48. Valett, H. M., S. G. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert Stream. Journal of the North American Benthological Society 9: 201–215.Google Scholar
  49. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.Google Scholar
  50. Vaux, W. G., 1968. Intergravel flow and interchange of water in a streambed. Fishery Bulletin 66: 479–489.Google Scholar
  51. White, D. S., C. H. Elzinga & S. P. Hendrix, 1987. Temperature patterns within the hyporheic zone of a northern Michigan river. Journal of the North American Benthological Society 6: 85–91.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • D.G. Uzarski
    • 1
  • C.A. Stricker
    • 2
  • T.M. Burton
    • 2
    • 3
  • D.K. King
    • 4
  • A.D. Steinman
    • 1
  1. 1.Grand Valley State University, Annis Water Resources InstituteMuskegonU.S.A
  2. 2.Department of ZoologyMichigan State UniversityEast LansingU.S.A
  3. 3.Department of Fisheries and WildlifeMichigan State UniversityEast LansingU.S.A
  4. 4.Department of BiologyCentral Michigan UniversityMt. PleasantU.S.A

Personalised recommendations