Advertisement

Hydrobiologia

, Volume 512, Issue 1–3, pp 97–108 | Cite as

Early stages of biofilm succession in a lentic freshwater environment

  • R. Sekar
  • V.P. Venugopalan
  • K. Nandakumar
  • K.V.K. Nair
  • V.N.R. Rao
Article

Abstract

Initial events of biofilms development and succession were studied in a freshwater environment at Kalpakkam, East Coast of India. Biofilms were developed by suspending Perspex (Plexiglass) panels for 15 days at bimonthly intervals from January 1996 to January 1997. Changes in biofilm thickness, biomass, algal density, chlorophyll a concentration and species composition were monitored. The biofilm thickness, biomass, algal density and chlorophyll a concentration increased with biofilms age and colonization was greater during summer (March, May and July) than other months. The initial colonization was mainly composed of Chlorella vulgaris, Chlorococcum humicolo (green algae), Achnanthes minutissima, Cocconeis scutellum, C. placentula (diatoms) and Chroococcus minutus (cyanobacteria) followed by colonial green algae such as Pediastrum tetras, P. boryanumand Coleochaete scutata, cyanobacteria (Gloeocapsa nigrescens), low profile diatoms (Amphora coffeaeformis, Nitzschia amphibia, and Gomphonema parvulum) and long stalked diatoms (Gomphoneis olivaceumand Gomphonema lanceolatum). After the 10th day, the community consisted of filamentous green algae (Klebshormidium subtile, Oedogonium sp., Stigeoclonium tenue and Ulothrix zonata) and cyanobacteria (Calothrix elenkinii, Oscillatoria tenuis and Phormidium tenue). Based on the percentage composition of different groups in the biofilm, three phases of succession could be identified: the first phase was dominated by green algae, the second by diatoms and the third phase by cyanobacteria. Seasonal variation in species composition was observed but the sequence of colonization was similar throughout the study period.

colonization succession microalgae biofilms green algae diatoms cyanobacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acs, E. & K. T. Kiss, 1993. Colonization process of diatoms on artificial substrates in the river Dunube near Budapest (Hungary). Hydrobiologia 269/270: 307–315.Google Scholar
  2. APHA, 1989. Standard Methods for Estimation of Water and Waste Water. American Public Health Association, 17th edn., Washington D.C.Google Scholar
  3. Bakke, R. & P. Q. Olsson, 1986. Biofilm thickness measurements by light microscopy. J. Microbiol. Methods. 5: 1–6.Google Scholar
  4. Brown, H. D., 1976. A comparison of the attached algal communities of a natural and artificial substrates. J. Phycol. 12: 301–306Google Scholar
  5. Callow, M. E., 1986. A world wide survey of slime formation on antifouling paints. In Evans, L. V. & K. D. Hoagland (eds), Algal Biofouling. Elsevier Science Publishers B.V., Amsterdam: 1–20.Google Scholar
  6. Callow, M. E., 1993. A review of fouling in freshwaters. Biofouling 7: 313–327.Google Scholar
  7. Christensen, B. E. & W. G. Characklis, 1990. Physical and chemical properties of biofilms. In Characklis, W. G. & K. C. Marshall (eds), Biofilms. John Wiley & Sons, New York: 93–130.Google Scholar
  8. Cooksey, K. E. & W. B. Cooksey, 1995. Adhesion of bacteria and diatoms to surfaces in the sea: A review. Aquat. Microbial Ecol. 9: 87–96.Google Scholar
  9. Desikachary, T. V., 1959. Cyanophyta. New Delhi: Indian Council of Agricultural Research, New Delhi.Google Scholar
  10. Ford, T. E., M. Walch, R. Mitchell, M. J. Kaufman, J. R. Vestal, S. A. Dither & M. A. Lock, 1989. Microbial film formation on metals in an enriched arctic river. Biofouling 1: 301–310.Google Scholar
  11. Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonisation and community structure of two periphyton assemblages, with emphasis on the Diatoms (Bacillariophyceae). Am. J. Bot. 69: 188–213.Google Scholar
  12. Hudon, C. & E. Bourget, 1981. Initial colonization of artificial substrate: commuity development and structure studied by scanning electron microscopy. Can. J. Fish. aquat. Sci. 59: 1371–1384.Google Scholar
  13. Hudson, S. T. & C. Burke. 1994. Microfouling of salmon cage netting: a priliminary investigation. Biofouling 8: 93–105.Google Scholar
  14. Hustedt, F., 1930. Bacillariophyta (Diatomeae). In Pascher, A. (ed.), Die Susswasser-Flora Mittleuropas. Gustav, Fischer, Jena.Google Scholar
  15. Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophyll a, b and c in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen. 167: 191–194.Google Scholar
  16. Johnson, R. E., N. C. Tuchman & C. G. Peterson, 1997. Changes in the vertical microdistribution of diatoms within a developing periphyton mat. J. N. Am. Benthol. Soc. 16: 503–519.Google Scholar
  17. Korte, V. L. & D. W. Blinn, 1983. Diatom colonization on artificial substrata in pool and riffle zones studied by light and scanning electron microscopy. J. Phycol. 19: 332–341.Google Scholar
  18. Lowe, R. L., J. B. Guckert, S. E. Belanger, D. H. Davidson & D.W. Johnson, 1996. An evaluation of periphyton community structure and function on tile and cobble substrata in experimental stream mesocosms. Hydrobiologia 328: 135–146.Google Scholar
  19. Margalef, R., 1958. Information theory in Ecology. Gen. Syst. 3: 36–71.Google Scholar
  20. Miller, A. R., R. L. Lowe & J. T. Rotenberry. 1987. Succession of diatom communities on sand grains. J. Ecol. 75: 693–709.Google Scholar
  21. Odum, E. P., 1971. Fundamentals of Ecology. W.B. Saunders Company, London.Google Scholar
  22. Oemke, M. P. & T. M. Burton, 1986. Diatom colonization dynamics in a lotic system. Hydrobiologia 139: 153–166.Google Scholar
  23. Patrick, R., 1976. The formation and maintenance of benthic diatom communities. Proc. am. phil. Soc. 120: 474–484.Google Scholar
  24. Pederson, K., 1990. Biofilm development on stainless steel and PVC surfaces in drinking water. Wat. Res. 24: 239–246.Google Scholar
  25. Philipose, M. T., 1967. Chlorococcales, ICAR, New Delhi.Google Scholar
  26. Pielou, E. C., 1966. The measurement of diversity in different types of biological collections. J. theor. Biol. 13: 131–144.Google Scholar
  27. Prescott, G.W., 1978. How to Know the Freshwater Algae. Wm. C. Brown Company Publishers, Dubuque, Iowa, U.S.A.Google Scholar
  28. Rao, T. S., P. G. Rani, V. P. Venugopalan & K. V. K. Nair, 1997. Biofilm formation in photic and aphotic environments in fresh water system. Biofouling 11: 265–282.Google Scholar
  29. Roemer, S. C., K. D. Hoagland & J. R. Rosowski, 1984. Development of a freshwater periphyton community as influenced by diatom mucilages. Can. J. Bot. 62: 1799–1813.Google Scholar
  30. Scott, C., R. L. Fletcher & G. B. Bremer, 1996. Observations on the mechanisms of attachment of some marine fouling cyanobacteria. Biofouling 10: 161–173.Google Scholar
  31. Sekar, R., K. Nandakumar, V. P. Venugopalan, K. V. K. Nair & V. N. R. Rao, 1998. Spatial variation in microalgal colonization on hard surfaces in a lentic freshwater environment. Biofouling 13: 177–195.Google Scholar
  32. Siver, P. A., 1977. Comparison of attached diatom communities on natural and artificial substrates. J. Phycol. 13: 402–406.Google Scholar
  33. Siver, P. A., 1980. Microattachment patterns of diatoms on leaves of Potamogeton robbinsii Oake. Trans. am. microsc. Soc. 99: 217–220.Google Scholar
  34. Sokal, R. R. & J. Rohlf, 1987. Introduction to Biostatistics, 2nd edition. W.H. Freeman & Company, New York.Google Scholar
  35. Sommer, U., 1981. The role of r-and K-selection in the succession of phytoplankton in Lake Constance. Acta. Oecol. Gener. 2: 327–342.Google Scholar
  36. Steinman, A. D. & C. D. McIntire, 1986. Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. J. Phycol. 22: 352–361.Google Scholar
  37. Stevenson, R. J., 1986. Importance of variation in algal immigration and growth rates estimated by modelling benthic algal colonisation. In Evans, L. V. & K. D. Hoagland (eds), Algal Biofouling. Elsevier Science Publisher, Amsterdam: 193–210.Google Scholar
  38. Stevenson, R. J. & C. G. Peterson, 1989. Variation in benthic diatom (Bacillariophyceae) immigration with habitat characteristics and cell morphology. J. Phycol. 25: 120–129.Google Scholar
  39. Tuchman, M. L. & D. W. Blinn, 1979. Comparison of attached algal communities on natural and artificial substrata along a thermal gradient. Br. phycol. J. 14: 243–254.Google Scholar
  40. Udayakumar, M., S. Chongdar & R. B. Srivastava, 1998. Microfouling on austentic stainless steel weldments immersed in Bombay harbour waters. Indian J. mar. Sci. 27: 230–232.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R. Sekar
    • 1
  • V.P. Venugopalan
    • 2
  • K. Nandakumar
    • 2
  • K.V.K. Nair
    • 2
  • V.N.R. Rao
    • 1
  1. 1.Centre of Advanced Study in BotanyUniversity of Madras, Guindy CampusChennaiIndia
  2. 2.Water and Steam Chemistry LaboratoryBhabha Atomic Research Centre FacilitiesKalpakkamIndia

Personalised recommendations