Hydrobiologia

, Volume 506, Issue 1–3, pp 135–145 | Cite as

Role of sediment and internal loading of phosphorus in shallow lakes

  • Martin Søndergaard
  • Jens Peder Jensen
  • Erik Jeppesen
Article

Abstract

The sediment plays an important role in the overall nutrient dynamics of shallow lakes. In lakes where the external loading has been reduced, internal phosphorus loading may prevent improvements in lake water quality. At high internal loading, particularly summer concentrations rise, and phosphorus retention can be negative during most of the summer. Internal P loading originates from a pool accumulated in the sediment at high external loading, and significant amounts of phosphorus in lake sediments may be bound to redox-sensitive iron compounds or fixed in more or less labile organic forms. These forms are potentially mobile and may eventually be released to the lake water. Many factors are involved in the release of phosphorus. Particularly the redox sensitive mobilization from the anoxic zone a few millimetres or centimetres below the sediment surface and microbial processes are considered important, but the phosphorus release mechanisms are to a certain extent lake specific. The importance of internal phosphorus loading is highly influenced by the biological structure in the pelagic, and lakes shifting from a turbid to a clearwater state as a result of, for example, biomanipulation may have improved retention considerably. However, internal loading may increase again if the turbid state returns. The recovery period following a phosphorus loading reduction depends on the loading history and the accumulation of phosphorus in the sediment, but in some lakes a negative phosphorus retention continues for decades. Phosphorus can be released from sediment depths as low as 20 cm. The internal loading can be reduced significantly by various restoration methods, such as removal of phosphorus-rich surface layers or by the addition of iron or alum to increase the sediment's sorption capacity.

biomanipulation iron recovery redox release mechanisms retention 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, F. Ø. & K. R. Olsen, 1994. Nutrient cycling in shallow, oligotrophic Lake Kvie, Denmark. II: Effects of isoetids on the exchange of phosphorus between sediment and water. Hydrobiologia 275/276: 267–276.Google Scholar
  2. Barko, J. W. & W. F. James, 1997. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer Verlag, New York: 197–214.Google Scholar
  3. Beklioglu, M., L. Carvalho & B. Moss, 1999. Rapid recovery of a shallow hypertrophic lake following sewage effluent diversion: lack of chemical resilience. Hydrobiologia 412: 5–15.Google Scholar
  4. Benndorf, J., 1990. Conditions for effective biomanipulation: conclusions derived from whole-lake experiments in Europe. Hydrobiologia 200/201: 187–203.Google Scholar
  5. Benndorf, J. & U. Miersch, 1991. Phosphorus loading and efficiency of biomanipulation. Verh. int. Ver. theor. angewand. Limnol. 24: 2482–2488.Google Scholar
  6. Blindow, I., A. Hargeby, M. A. Bálint, A. Wagner & G. Andersson, 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biol. 44: 185–197.Google Scholar
  7. Boers, P. C. M., W. van Raaphorst & T. D. van der Molen, 1998. Phosphorus retention in sediments. Water Sci. Technol. 37: 31–39.Google Scholar
  8. Born, S. M., 1979. Lake rehabilitation: a status report. Environ. Manag. 3: 145–153.Google Scholar
  9. Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.Google Scholar
  10. Breukelaar, A. W., E. H. H. R. Lammens, J. G. B. Klein Breteler & I. Tátrai, 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprius carpio) on sediment resuspension and concentration of nutrients and chlorophyll-a. Freshwater Biol. 32: 113–121.Google Scholar
  11. Caraco, N. F., J. J. Cole & G. E. Likens, 1993. Sulfate control of phosphorus availability in lakes – a test and reevaluation of Hasler and Einsele model. Hydrobiologia 253: 275–280.Google Scholar
  12. Christensen, K. K., F. Ø. Andersen & H. S. Jensen, 1997. Comparison of iron, manganese and phosphorus retention in freshwater littoral sediment with growth of Littorella uniflora and benthic microalge. Biogeochemistry 38: 149–171.Google Scholar
  13. Cooke, G. D., E. B. Welch, S. A. & P. R. Newroth, 1993. Restoration and Management of Lakes and Reservoirs, 2nd ed. Lewis Publishers, Boca Raton.Google Scholar
  14. Driscoll, C. T, S.W. Effler, M. T. Auer, S. M. Doerr & M. R. Penn, 1993. Supply of phosphorus to the water column of a productive hardwater lake – controlling mechanisms and management considerations. Hydrobiologia 253: 61–72.Google Scholar
  15. Dunst, R., S. M. Born, P. D. Uttormark, S. Smith, S. Nichols, J. Peterson, D. Knauer, S. Sern, D. Winter & T. Witrh, 1974. Survey of lake rehabilitation technique and experiences. Technical Bulletin 75. Department of Natural Resources, Madison, Wisconsin.Google Scholar
  16. Duras, J. & J. Hejzlar, 2001. The effect of outflow depth on phosphorus retention in a small, hypertrophic temperate reservoir with short hydraulic residence time. Int. Rev. gesamten Hydrobiol. 86: 585–601.Google Scholar
  17. Edmondson, W. T. & J. T. Lehman, 1981. The effect of changes in the nutrient income on the conditions of Lake Washington. Limnol. Oceanogr. 26: 1–29.Google Scholar
  18. Einsele, W., 1936. Ñber die Beziehungen der Eisenkreislaufes zum Phosphorkreislauf im eutrophen See. Arch. Hydrobiol. 29: 664–686.Google Scholar
  19. Ekholm, P., O. Malve & T. Kirkkala, T., 1997. Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhäjärvi, southwest Finland. Hydrobiologia 345: 3–14.Google Scholar
  20. Fan, C. X., L. Zhang & T. C. Qu, 2001. Lake sediment resuspension and caused phosphate release – a simulation study. J. Environ. Sci. – China 13: 406–410.Google Scholar
  21. Frodge, J. D., G. L. Thomas & G. B. Pauley, 1991. Sediment phosphorus loading beneath dense canopies of aquatic macrophytes. Lake and Reservoir Management 7: 61–71.Google Scholar
  22. Fukuhara, H. & M. Sakamoto, 1987. Enhancement of inorganic nitrogen and phosphate release from lake sediment by tubificid worms and chironomid larvae. Oikos 48: 312–320.Google Scholar
  23. Golterman, H. L., 1995. The labyrinth of nutrient cycles and buffers in wetlands: results based on research in the Camargue, (southern France). Hydrobiologia 315: 39–58.Google Scholar
  24. Golterman, H. L., 2001. Phosphate release from anoxic sediments or ‘What did Mortimer really write?’ Hydrobiologia 450: 99–106.Google Scholar
  25. Golterman, H. L. & A. Booman, 1988. Sequential extraction of ironphosphate and calcium-phosphate from sediments by chelating agents. Verh. int. Ver. theor. angewand. Limnol. 23: 904–909.Google Scholar
  26. Gomez, E., M. Fillit, M. C. Ximenes & B. Picot, 1998. Phosphate mobility at the sediment–water interface of a Mediterranean laggon (etang du Mejean), seasonal phosphate variation. Hydrobiologia 374: 203–216.Google Scholar
  27. Gonsiorczyk, T., P. Casper & R. Koschel, 2001. Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: importance of the permanently oxic sediment surface. Arch. Hydrobiol. 151: 203–219.Google Scholar
  28. Granéli, W., 1999. Internal phosphorus loading in Lake Ringsjön. Hydrobiologia 404: 19–26.Google Scholar
  29. Graneli, W. & D. Solander, 1988. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170: 245–266.Google Scholar
  30. Hansen, P. S., E. J. Philips & F. J. Aldridge, 1997. The effects of sediment resuspension on phosphorus available for algal growth in a shallow subtropical lake, Lake Okeechobee. Lake and Reservoir Management 13: 154–159.Google Scholar
  31. Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biol. 38: 159–168.Google Scholar
  32. Hansson, L-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P-Å. Nilsson, M. Søndergaard & J. Strand, 1998. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 558–574.Google Scholar
  33. Hartley, A. M., W. A. House, M. E. Callow & S. C. Leadbeater, 1997. Coprecipitation of phosphate with calcite in the presence of photosynthesizing green algae. Water Res. 31: 2261–2268.Google Scholar
  34. Havens, K. E., 1991. Fish-induced sediment resuspension – effects on phytoplankton biomass and community structure in a shallow hypereutrophic lake. J. Plankton Res. 13: 1163–1176.Google Scholar
  35. Havens, K. E., 1993. Responses to experimental fish manipulations in a shallow, hypereutrophic lake – the relative importance of benthic nutrient recycling and trophic cascade. Hydrobiologia 254: 73–80.Google Scholar
  36. Hieltjes, A. H. M. & L. Lijklema, 1980. Fractionation of inorganic phosphates in calcareous sediments. J. Environ. Qual. 9: 405–407.Google Scholar
  37. Holmer, M. & P. Storkholm, 2001. Sulphate reduction and sulphur cycling in lake sediments. A review. Freshwater Biol. 46: 431–451.Google Scholar
  38. Horppila, J., H. Peltonen, T. Malinen, E. Loukkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restoration Ecol. 6: 20–28.Google Scholar
  39. Horppila, J. & L. Nurminen, 2001. The effect of an emergent macrophyte (Typha angustifolia) on sediment resuspension in a shallow north temperate lake. Freshwater Biol. 46: 1447–1455.Google Scholar
  40. House, W. A., H. Casey, L. Donaldson & S. Smith, 1986. Factors affecting the coprecipitation of inorganic phosphate with calcite in hardwaters – I, laboratory studies. Water Res. 20: 917–922.Google Scholar
  41. Istvánovics, V. & K. Pettersson, 1998. Phosphorus release in relation to composition and isotopic exchangeability of sediment phosphorus. Arch. Hydrobiol. Special Issues of Advances Limnology 51: 91–104.Google Scholar
  42. James, W. F., J. W. Barko & S. J. Field, 1996. Phosphorus mobilization from littoral sediments of an inlet region in Lake Delavan, Wisconsin. Arch. Hydrobiol. 138: 245–257.Google Scholar
  43. Jáugeui, J. & J. A. G. Sánches, 1993. Fractionation of sedimentary phosphorus: a comparison of four methods. Verh. int. Ver. theor. angewand. Limnol. 25: 1150–1152.Google Scholar
  44. Jensen, H. S. & F. Ø. Andersen, 1992. Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnol. Oceanogr. 37: 577–589.Google Scholar
  45. Jensen, H. S., P. Kristensen, E. Jeppesen & A. Skytthe, 1992. Iron:phosphorus ratio in surface sediment as an indicator of phosphorus release from aerobic sediments in shallow lakes. Hydrobiologia 235/236: 731–743.Google Scholar
  46. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–227.Google Scholar
  47. Jeppesen, E., P. Kristensen, J. P. Jensen, M. Søndergaard, E. Mortensen & T. Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resilience. Memorie dell'Istituto italiano di idrobiologia dott. Marco de Marchi 48: 127–148.Google Scholar
  48. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwa-ter lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164.Google Scholar
  49. Jones, C. A. & E. B. Welch, 1990. Internal phosphorus loading related to mixing and dilution in a dendritic, shallow prairie lake. Res. J. Water Poll. Control Fed. 62: 847–852.Google Scholar
  50. Kleeberg, A. & H. Schubert, 2000. Vertical gradients in particle distribution and its elemental composition under oxic and anoxic conditions in a eutrophic lake, Scharmutzelsee, NE Germany. Arch. Hydrobiol. 148: 187–207.Google Scholar
  51. Koski-Vahala, J. & H. Hartikainen, 2001. Assessment of the risk of phosphorus loading due to resuspended sediment. J. Environ. Qual. 30: 960–996.Google Scholar
  52. Kozerski, H. P. & A. Kleeberg, 1998. The sediments and benthicpelagic exchange in the shallow lake Muggelsee (Berlin, Germany). Int. Rev. gesamt. Hydrobiol. 83: 77–112.Google Scholar
  53. Kozerski, H. P., H. Behrendt & J. Köhler, 1999. The N and P budget of the shallow, flushed lake Müggelsee: retention, external and internal load. Hydrobiologia 408/409: 159–166.Google Scholar
  54. Kristensen, P., M. Søndergaard & E. Jeppesen, 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101–109.Google Scholar
  55. Lee, G. F.,W. C. Sonzogni & R. D. Spear, 1977. Significance of oxic vs anoxic conditions for Lake Mendota sediment phosphorus release. In Golterman, H. L. (ed.), Interactions Between Sediments and Freshwater: 294–306.Google Scholar
  56. Lijklema, L. 1976. The role of iron in the exchange of phosphate between water and sediments. In Interaction Between Sedimetns and Freshwater. SIL-UNESCO-symp., Junk, The Hague: 313–317.Google Scholar
  57. Lijklema, L., 1993. Considerations in modelling the sediment water exchange of phosphorus. Hydrobiologia 253: 219–231.Google Scholar
  58. Luecke, C., M. J. Vanni, J. J. Magnuson, J. F. Kitchell & P. T. Jacobson, 1990. Seasonal regulation of Daphnia populations by planktivorous fish: implications for the spring clear-water phase. Limnol. Oceanogr. 25: 1718–1733.Google Scholar
  59. Löfgren, S. & S.-O. Ryding, 1985. Apatite solubility and microbial activities as regulators of internal loading in shallow, eutrophic lakes. Verh. int. Ver. theor. angewand. Limnol. 22: 3329–3334.Google Scholar
  60. Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwater Biol. 21: 139–162.Google Scholar
  61. McAuliffe, T. F., R. J. Lukatelich, A. J. McComb & S. Qiu, 1998. Nitrate applications to control phosphorus release from sediments of a shallow eutrophic estuary: an experimental evaluation. Mar. Freshwater Res. 49: 463–473.Google Scholar
  62. Moore, P. A., K. R. Reddy & M. M. Fisher, 1998. Phosphorus flux between sediment and overlying water in Lake Okeechobee, Florida: spatial and temporal variations. J. Environ. Qual. 27: 1428–1439.Google Scholar
  63. Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29: 280–329.Google Scholar
  64. Nicholls, K. H., M. F. P. Michalski & W. Gibson, 1996. An experimental demonstration of trophic interactions affecting water quality of Rice Lake, Ontario (Canada). Hydrobiologia 319: 73–85.Google Scholar
  65. Nixdorf, B. & R. Deneke, 1995. Why ‘very shallow’ lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342/343: 269–284.Google Scholar
  66. OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris: 210 pp.Google Scholar
  67. Ohle, W., 1958. Die Stoffwechseldynamik der Seen in Abhängigkeit von der Gasausscheidung ihres Schlammes. Vom Wasser 25: 127–149.Google Scholar
  68. Ohle, W., 1978. Ebullition of gases from sediment, condition, and relationship to primary production of lakes. Verh. int. Ver. theor. angewand. Limnol. 20: 957–962Google Scholar
  69. Olila, O. G. & K. R. Reddy, 1997. Influence of redox potential on phosphate-uptake by sediments in two sub-tropical eutrophic lakes. Hydrobiologia 345: 45–57.Google Scholar
  70. Penn, M. R., M. T. Auer, S. M. Doerr, C. T. Driscoll, C. M. Brooks & S. W. Effler, 2000. Seasonality in phosphorus release rates from the sediments of a hypereutrophic lake under a matrix of pH and redox conditions. Can. J. Fish. Aquat. Sci. 57: 1033–1041.Google Scholar
  71. Perkins, R. G. & G. J. C. Underwood, 2001. The potential for phosphorus release across the sediment–water interface in a eutrophic reservoir dosed with ferric sulphate. Water Res. 35: 1399–1406.Google Scholar
  72. Persson, L., L. Johansson, G. Andersson, S. Diehl & S. F. Hamrin, 1993. Density dependent interactions in lake ecosystems: whole lake perturbation experiments. Oikos 66: 193–208.Google Scholar
  73. Pettersson, K., 1998. Mechanisms for internal loading of phosphorus in lakes. Hydrobiologia 374: 21–25.Google Scholar
  74. Pettersson, K., B. Boström & O. Jacobsen, 1988. Phosphorus in sediments – speciation and analysis. Hydrobiologia 170: 91–101.Google Scholar
  75. Petticrew, E. L. & J. M. Arocena, 2001. Evaluation of ironphosphate as a source on internal lake phosphorus loadings. Sci. Total Environ. 266: 87–93.Google Scholar
  76. Phillips, G., R. Jackson, C. Bennet & A. Chilvers, 1994. The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation. Hydrobiologia 275/276: 445–456.Google Scholar
  77. Phillips, G., A. Bramwell, J. Pitt, J. Stansfield & M. R. Perrow, 1999. Practical application of 25 years' research into the management of shallow lakes. Hydrobiologia 275/276: 445–456.Google Scholar
  78. Psenner, R., B. Boström, M. Dinka, K. Pettersson, R. Pucsko & M. Sager, 1988. Fractionation of phosphorus in suspended matter and sediment. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 98–110.Google Scholar
  79. Ramm, K. & V. Scheps, 1997. Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia 342: 43–53.Google Scholar
  80. Ripl, W., 1986. Internal phosphorus recycling mechanisms in shallow lakes. In Lake and reservoir management, vol. 2. Proceeding of the fifth annual conference and internal symposium on applied lake & watershed management, November 13–16, 1985, Lake Geneva, Wisconsin: North American Lake Management Society, NALMS: 138–142.Google Scholar
  81. Rydin, E., 2000. Potentially mobile phosphorus in Lake Erken sediment. Water Res. 34: 2037–2042.Google Scholar
  82. Ryding, S.-O., 1981. Reversibility of Man-induced Eutrophication. Experiences of a Lake Recovery Study in Sweden. Int. Rev. gesamt. Hydrobiol. 66: 449–503.Google Scholar
  83. Sas, H., 1989. Lake restoration by reduction of nutrient loading. Expectations, experiences, extrapolation. Academic Verlag St. Augustin: 497 pp.Google Scholar
  84. Scharf, W., 1999. Restoration of the highly eutrophic lingese reservoir. Hydrobiologia 416: 85–96.Google Scholar
  85. Seo, D. I., 1999. Analysis of sediment characteristics of total phosphorus models for Shagawa Lake. J. Environ. Engin. – ASCE 125: 346–350.Google Scholar
  86. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiol. 106: 433–471.Google Scholar
  87. Stephen, D., B. Moss & G. Phillips, 1997. Do rooted macrophytes increase sediment phosphorus release? Hydrobiologia 342: 27–34.Google Scholar
  88. Stumm, W. & J. O. Leckie, 1971. Phosphate exchange with sediments; its role in the productivity of surface waters. Proc. 5. International Water Pollution Research Conference, Pergamon Press, London.Google Scholar
  89. Søndergaard, M., 1988. Seasonal variations in the loosely sorbed phosphorus fraction of the sediment of a shallow and hypereutrophic lake. Environ. Geol. 11: 115–121.Google Scholar
  90. Søndergaard, M., 1989. Phosphorus release from a hypertrophic lake sediment: experiments with intact sediment cores in a continuous flow systems. Arch. Hydrobiol. 116: 45–59.Google Scholar
  91. Søndergaard, M., E. Jeppesen, E. Mortensen, E. Dall, P. Kristensen & O. Sortkjær, 1990. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200/201: 229–240.Google Scholar
  92. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and windexposed Lake Arresø, Denmark. Hydrobiologia 228: 91–99.Google Scholar
  93. Søndergaard, M., P. Kristensen & E. Jeppesen, 1993. Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake Søbygaard, Denmark. Hydrobiologia 253: 345–356.Google Scholar
  94. Søndergaard, M., J. Windolf & E. Jeppesen, 1996. Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry. Water Res. 30: 992–1102.Google Scholar
  95. Søndergaard, M., J. P. Jensen & E. Jeppesen, 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408/409: 145–152.Google Scholar
  96. Søndergaard, M., E. Jeppesen, J. P. Jensen & T. Lauridsen, 2000. Lake restoration in Denmark. Lakes & Reservoirs: Research and Management 5: 151–159.Google Scholar
  97. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World 1: 427–442.Google Scholar
  98. Søndergaard, M., J. P. Jensen, E. Jeppesen & P. H. Møller, 2002a. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading. Aquat. Ecosys. Health & Managment 5: 19–29.Google Scholar
  99. Søndergaard, M., K.-D. Wolter & W. Ripl, 2002b. Chapter 10 ‘Chemical treatment of water and sediments with special reference to lakes’. In Perrow, M. & T. Davy (eds), Handbook of Restoration Ecology. Cambridge University Press.Google Scholar
  100. Tessenow, U., 1972. Lösungs-, diffusions-und sorptionsprozesse in der oberschicht von Seesedimenten. Arch. Hydrobiol. Suppl. 38: 353–398.Google Scholar
  101. Van den Berg, M. S., H. Coops, M.-L. Meijer, M. Scheffer & J. Simons, 1997. Clear water associated with dense Chara vegetation in the shallow and turbid lake Veluwemeer, The Netherlands. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer Verlag, New York: 339–352.Google Scholar
  102. van der Molen, D. T. & P. C. N. Boers, 1994. Influence of internal loading on phosphorus concentration in shallow lakes before and after reduction of the external loading. Hydrobiologia 275/276: 379–389.Google Scholar
  103. van Luijn, F. V., D. T. van der Molen, W. J. Luttmer & P. C. M. Boers, 1995. Influence of benthic diatoms on the nutrient release from sediments of shallow lakes recovering from eutrophication. Water Sci. Technol. 32: 89–97.Google Scholar
  104. Vollenweider, R. A., 1976. Advance in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell'Istituto Italiano di Idrobiologia dott. Marco de Marchi 33: 53–83.Google Scholar
  105. Welch, E. B. & G. D. Cooke, 1995. Internal phosphorus loading in shallow lakes: importance and control. Lake and Reservoir Management 11: 273–281.Google Scholar
  106. Welch, E. B.& G. D. Cooke, 1999. Effectiveness and longevity of phosphorus inactivation with alum. Lake and Reservoir Management 15: 5–27.Google Scholar
  107. Williams, J. D. H., J. K. Syers, R. F. Harris & D. E. Armstrong, 1971. Fractionation of inorganic phosphate in calcareous lake sediments. Soil Sci. Soc. Am. Proc. 35: 250–255.Google Scholar
  108. Woodruff, S. L.,W. A. House, M. E. Callow & B. S. C. Leadbeater, 1999. The effects of biofilms on chemical processes in surficial sediements. Freshwater Biol. 41: 73–89.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Martin Søndergaard
    • 1
  • Jens Peder Jensen
    • 1
  • Erik Jeppesen
    • 1
  1. 1.Department of Freshwater EcologyNational Environmental Research InstituteSilkeborgDenmark

Personalised recommendations