Advertisement

Hydrobiologia

, Volume 506, Issue 1–3, pp 51–58 | Cite as

Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe

  • Peeter Nõges
  • Tiina Nõges
  • Lea Tuvikene
  • Halina Smal
  • Slawomir Ligeza
  • Ryszard Kornijów
  • Wojciech Peczula
  • Eloy Bécares
  • Francisco Garcia-Criado
  • Christina Alvarez-Carrera
  • Camino Fernandez-Alaez
  • Carmen Ferriol
  • Rosa Maria Miracle
  • Eduardo Vicente
  • Susana Romo
  • Ellen Van Donk
  • Wouter van de Bund
  • Jens Peder Jensen
  • Elisabeth M. Gross
  • Lars-Anders Hansson
  • Mikael Gyllström
  • Mirva Nykänen
  • Elvira de Eyto
  • Kenneth Irvine
  • Deborah Stephen
  • Sally Collings
  • Brian Moss
Article

Abstract

In order to disentangle the causes of variations in water chemistry among European shallow lakes, we performed standardised sampling programs in 86 lakes along a latitudinal gradient from southern Spain to northern Sweden. Lakes with an area of 0.1 to 27 000 ha and mean depth of 0.4–5.6 m located in low to high altitudes were investigated within the EC project ECOFRAME 1–4 times during June–October 2000–2001. Several variables like conductivity, alkalinity, abundance of submerged plants, concentrations of suspended solids, total nitrogen and phosphorus were latitude-dependent decreasing from south to north. Secchi depth, concentrations of total nitrogen, total phosphorus, suspended solids, and chlorophyll a correlated strongly with the presumed quality classes of the lakes. We came to the conclusion that the variability of shallow lakes in Europe is still mostly dependent on natural differences. Variables connected to lake morphometry, seasonality, basin geology and climate explained altogether nearly half of the total variability of lakes. The trophic state factor, describing mostly the human influence on lakes, was the strongest single factor responsible for nearly a quarter of the total variability of the studied European lakes.

ecological status European shallow lakes hydrochemistry latitude 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvola, L., 1981. Spectrophotometric determination of chlorophyll a and phaeopigments in ethanol extractions. Annales Botanici Fennici 18: 221–227.Google Scholar
  2. Canfield, D. E. J., J. V. Shireman, D. E. Colle & W. T. Haller, 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. aquat. Sci. 41: 497–501.Google Scholar
  3. Cobelas, M. A. & C. Rojo, 1994. Spatial, seasonal and long-term variability of phytoplankton photosynthesis in lakes. J. Plankton Res. 16: 1691–1716.Google Scholar
  4. Duarte, C., S. Agusti & D. E. Jr. Canfield, 1992. Patterns in phytoplankton community structure in Florida lakes. Limnol. Oceanogr. 37: 155–161.Google Scholar
  5. EC Directive 2000/60/EC. Directive of the European Parliament and of the Council of the European Union establishing a framework for community action in the field of water policy. Council of the European Union, Brussels: 66 pp.Google Scholar
  6. Faafeng, B. A. & D. O. Hessen, 1993. Nitrogen and phosphorus concentrations and N:P ratios in Norwegian lakes: Perspectives of nutrient limitation. Verh. int. Ver. theor. angewan. Limnol. 25: 465–469.Google Scholar
  7. Jensen, J. P., P. Kristensen & E. Jeppesen, 1990. Relationships between nitrogen loading and in-lake nitrogen concentrations in shallow Danish lakes. Verh. int. Ver. theor. angewan. Limnol. 24: 201–204.Google Scholar
  8. Kalff, J., 1991. The utility of latitude and other environmental factors as predictors of nutrients, biomass and production in lakes worldwide: problems and alternatives. Verh. int. Ver. theor. angewan. Limnol. 24: 1235–1239.Google Scholar
  9. Maberly, S. C., L. Kling, C. E. Gibson, L. May, R. I. Jones, M. M. Dent & C. Jordan, 2003. Linking nutrient limitation and water chemistry to catchment characteristics. Hydrobiologia 506–509: 83–91.Google Scholar
  10. Mathes, J. I. Korczynski & J. Müller, 2003. Shallow lakes in Northeast Germany – Trophic situation and restoration programmes. Hydrobiologia 506–509: 797–802.Google Scholar
  11. Moss, B., M. Beklioglu, L. Carvalho, S. Kilinc, S. McGowan & D. Stephen, 1997. Vertically challenged limnology; contrasts between deep and shallow lakes. Hydrobiologia 342/343: 267–267.Google Scholar
  12. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytika Chimica Acta 27: 31–36.Google Scholar
  13. Ott, I., R. Laugaste & T. Kõiv, 1999. Investigations of biodiversity in freshwater ecosystems in Estonia. In Hydrobiological Research in the Baltic Countries. Part I. Rivers and Lakes. Vilnius: 325– 368.Google Scholar
  14. Padisák, J. & C.S. Reynolds, 2003. Shallow lakes: The absolute, the relative, the functional and the pragmatic. Hydrobiologia 506– 509: 1–11.Google Scholar
  15. Schindler, D., 1978. Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol. Oceanogr. 23: 478–486.Google Scholar
  16. Vighi, M. & G. Chiaudani, 1985. A simple method to estimate lake P concentrations resulting from natural background loadings. Wat. Res. 19: 987–991.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Peeter Nõges
    • 1
    • 2
  • Tiina Nõges
    • 1
    • 2
  • Lea Tuvikene
    • 2
  • Halina Smal
    • 3
  • Slawomir Ligeza
    • 3
  • Ryszard Kornijów
    • 4
  • Wojciech Peczula
    • 5
  • Eloy Bécares
    • 6
  • Francisco Garcia-Criado
    • 6
  • Christina Alvarez-Carrera
    • 6
  • Camino Fernandez-Alaez
    • 6
  • Carmen Ferriol
    • 7
  • Rosa Maria Miracle
    • 7
  • Eduardo Vicente
    • 7
  • Susana Romo
    • 7
  • Ellen Van Donk
    • 8
  • Wouter van de Bund
    • 8
  • Jens Peder Jensen
    • 9
  • Elisabeth M. Gross
    • 10
  • Lars-Anders Hansson
    • 11
  • Mikael Gyllström
    • 11
  • Mirva Nykänen
    • 11
  • Elvira de Eyto
    • 12
  • Kenneth Irvine
    • 12
  • Deborah Stephen
    • 13
  • Sally Collings
    • 13
  • Brian Moss
    • 13
  1. 1.Institute of Zoology and HydrobiologyUniversity of TartuTartuEstonia
  2. 2.Võrtsjärv Limnological Station, Institute of Zoology and BotanyEstonian Agricultural UniversityRannu, Tartu countyEstonia
  3. 3.Institute of Soil Science and Environment ManagementAgricultural UniversityLublinPoland
  4. 4.Department of Hydrobiology and IchthyobiologyAgricultural UniversityLublinPoland
  5. 5.Department of Botany and HydrobiologyCatholic University of LublinLublinPoland
  6. 6.Department of Ecology, Faculty of BiologyUniversity of LeonLeonSpain
  7. 7.Department of Microbiology & EcologyUniversity of ValenciaBurjassot (Valencia)Spain
  8. 8.NIOO-Centre for LimnologyNieuwersluisThe Netherlands
  9. 9.Natural Environment Research InstituteSilkeborgDenmark
  10. 10.XXX10XXXLimnological Institute, Department of BiologyUniversity of KonstanzKonstanzGermany
  11. 11.Ecology buildingXXX11XXXInstitute of Ecology and LimnologyLundSweden
  12. 12.Department of ZoologyCollege Green, Trinity College DublinDublin 2Ireland
  13. 13.XXX14XXXSchool of Biological Sciences, Derby BuildingUniversity of LiverpoolLiverpoolU.K

Personalised recommendations