Hydrobiologia

, Volume 506, Issue 1–3, pp 257–263

Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake

  • Tiina Nõges
  • Peeter Nõges
  • Reet Laugaste
Article

DOI: 10.1023/B:HYDR.0000008540.06592.48

Cite this article as:
Nõges, T., Nõges, P. & Laugaste, R. Hydrobiologia (2003) 506: 257. doi:10.1023/B:HYDR.0000008540.06592.48

Abstract

We studied the effect of water level changes in Lake Võrtsjärv (270 km2, mean depth 2.8 m) on the abundance and composition of phytoplankton based on a 35-year database. Analysis of long time-series (since 1884) revealed a strong influence of the North Atlantic Oscillation on the water level in this lake. The registered maximum range of water level in L. Võrtsjärv is 3.2 m, which corresponds to 1.4 times difference in the lake area, 2.5 times difference in the mean depth and 3.5 times difference in volume. Cyanobacteria build up 2/3 of the average phytoplankton biomass during the ice-free period (May–October). On average 75% of the cyanophyte biomass is formed by four filamentous species. Centric diatoms from the genera Aulacoseira and Cyclotella dominate in the biomass of diatoms. Phytoplankton biomass was significantly lower in years of high water level and the changes were unrelated to nutrient loading. The share of filamentous blue-greens among phytoplankton followed the changes in the water level while there was a succession of dominants. Planktolyngbya limnetica reached its maximum in the low water period in the middle of the 1970s. Limnothrix redekei and L. planktonica started to dominate in the high water period in the 1980s while the total biomass decreased substantially in spite of high nutrient loading. During the low water period in the 1990s, the role of the nitrogen-fixing species Aphanizomenon skujae increased. The succession was caused by changes in light and nutrient availability in the fully mixed environment. As low light species, filamentous Limnothrix spp. were most successful in competition for light and phosphorus in deeper water while A. skujae was favoured by high light intensities and a low N/P ratio in shallow water.

Aphanizomenon filamentous cyanobacteria large shallow lake Limnothrix redekei phytoplankton water level 

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Tiina Nõges
    • 1
    • 2
  • Peeter Nõges
    • 1
    • 2
  • Reet Laugaste
    • 1
    • 2
  1. 1.Institute of Zoology and Botany of theEstonian Agricultural University, Võrtsjärv Limnological StationRannu, TartumaaEstonia
  2. 2.Institute of Zoology and HydrobiologyUniversity of TartuTartuEstonia

Personalised recommendations