Hydrobiologia

, Volume 510, Issue 1–3, pp 53–66 | Cite as

The influence of habitat structure and flow permanence on invertebrate communities in karst spring systems

  • H. Smith
  • P.J. Wood
  • J. Gunn

Abstract

The macroinvertebrate fauna of five karst (limestone) springbrook systems with contrasting physical habitat and discharge patterns were investigated to examine the role of flow permanence and habitat structure on macroinvertebrate community composition. Clear physical differences were identified between perennial and intermittent springs and individual sampling stations. However, flow permanence, water temperature and the input of leaf litter exerted a greater influence on the aquatic invertebrate community than habitat structure. Perennial sites were characterised by a greater abundance of macroinvertebrates and greater Ephemeroptera, Plecoptera and Trichoptera (EPT) richness than intermittent sites. The fauna of all of the springbrook systems examined were dominated by relatively common and ubiquitous taxa (e.g. Gammarus pulex) although a number of taxa displaying life cycle adaptations to ephemeral aquatic habitats (e.g. Limnephilus auricula and Stenophylax permistus) were recorded at intermittent sites.

flow variability spring ecology groundwater habitat structure crenobiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, P. D., I. Pardo & A. Brown, 1995. Temporal constancy in 'mesohabitats' - application to management. Arch. Hydrobiol. 133: 367-387.Google Scholar
  2. Arscott, D. B., K. Tockner & J. V. Ward, 2001. Thermal heterogeneity along a braided floodplain river (Tagliamento River, northeastern Italy). Can. J. Fish. aquat. Sci. 58: 2359-2373.Google Scholar
  3. Batzer, D. P. & V. H. Resh, 1992. Macroinvertebrates of a California seasonal wetland and responses to experimental habitat manipulation. Wetlands 12: 1-7.Google Scholar
  4. Botosaneanu, L., 1998. Studies in Crenobiology: The Biology of Springs and Springbrooks. Backhuys Publishers, Leiden: 261 pp.Google Scholar
  5. Boulton, A. J., 1989. Over-summering refuges of aquatic macroinvertebrates in two intermittent streams in Central Victoria. Trans. r. Soc. Southern Aust. 113: 23-34.Google Scholar
  6. Boulton, A. J. & P. S. Lake, 1992. The ecology of two intermittent streams in Victoria, Australia. II. Comparisons of faunal composition between habitats, rivers and years. Freshwat. Biol. 27: 99-121.Google Scholar
  7. Castella, E., M. Bickerton, P. D. Armitage & G. E. Petts, 1995. The effects of water abstractions on invertebrate communities in U.K. streams. Hydrobiologia 308: 167-182.Google Scholar
  8. Danks, H. V. & D. D. Williams, 1991. Arthropods of springs, with particular reference to Canada: synthesis and needs for research. Mem. Entomol. Soc. Can. 155: 203-217.Google Scholar
  9. Erman, N. A. & D. C. Erman, 1995. Spring Permanence, Trichoptera Species Richness, and the Role of Drought. J. Kans. Entomol. Soc. 68: 50-64.Google Scholar
  10. Feminella, J. W., 1996. Comparison of benthic macroinvertebrate assemblages in small streams along a gradient of flow permanence. J. N. am. benthol. Soc. 15: 651-669.Google Scholar
  11. Glazier D. S., 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwat. Biol. 26: 527-542.Google Scholar
  12. Glazier, D. S. & J. L. Gooch, 1987. Macroinvertebrate assemblages in Pennsylvania (U.S.A.) springs. Hydrobiologia 150: 33-43.Google Scholar
  13. Gooch, J. L. & D. S. Glazier, 1991. Temporal and spatial patterns in mid-Appalachian springs. Mem. Entomol. Soc. Can. 155: 29-49.Google Scholar
  14. Gordon, N. D., T. A. McMahon & B. L. Finlayson, 1992. Stream Hydrology: An Introduction for Ecologists. John Wiley and Sons, Chichester: 526 pp.Google Scholar
  15. Gray, L. J., 1981. Species composition and life histories of aquatic insects in a lowland Sonoran desert stream. Am. Mid. Nat. 106: 229-242.Google Scholar
  16. Gunn, J., D. Lowe & T. Waltham, 1998. The karst geomorphology and hydrogeology of Great Britain. In Daoxian, Y. & L. Zaihua (eds), Global Karst Correlation. Science Press and VSP BV.Google Scholar
  17. Harper, D. M., C. Smith, P. Barham & R. Howell, 1995. The ecological basis for the management of the natural environment. InHarper, D. M. & A. J. Ferguson (eds), The Ecological Basis for River Management. John Wiley and Sons, Chichester: 59-78.Google Scholar
  18. Hoffsten, P.-O. & B. Malmqvist, 2000. The macroinvertebrate fauna and hydrogeology of springs in central Sweden. Hydrobiologia 436: 91-104.Google Scholar
  19. Ito, T., 1998. The biology of the primitive, distinctly crenophilic caddisflies, Ptilocolepinae (Trichoptera, Hydroptilidae). A review. In Botosaneanu, L. (ed.), Studies in Crenobiology: The Biology of Springs and Springbrooks. Backhuys Publishers, Leiden: 85-94.Google Scholar
  20. Ladle, M. & J. A. B. Bass, 1981. The ecology of a small chalk stream and its responses to drying during drought conditions. Arch. Hydrobiol. 90: 448-466.Google Scholar
  21. Langton, P. H. & J. Cass, 1998. Changes in chironomid assemblage composition in two Mediterranean mountain streams over a period of extreme hydrological conditions. Hydrobiologia 390: 37-47.Google Scholar
  22. Lindegaard, C., 1995. Chironomidae (Diptera) of European cold springs and factors influencing their distribution. J. Kans. Entomol. Soc. suppl. 68: 108-131.Google Scholar
  23. Lindegaard, C., K. P. Brodersen, P. Wiberg-Larsen & J. Skriver, 1998. Multivariate analyses of macrofaunal communities in Danish springs and springbrooks. In Botosaneanu, L. (ed.), Studies in Crenobiology: The Biology of Springs and Springbrooks. Backhuys Publishers, Leiden: 201-210.Google Scholar
  24. Meyer, A. & E. I. Meyer, 2000. Discharge and macroinvertebrates in a temporary karstic stream. Aquat. Sci. 62: 216-231.Google Scholar
  25. Pardo, I. & P. D. Armitage, 1997. Species assemblages as descriptors of mesohabitats. Hydrobiologia 344: 111-128.Google Scholar
  26. Petts, G. E., M. A. Bickerton, C. Crawford, D. N. Learner & D. Evans, 1999. Flow management to sustain groundwaterdominated stream ecosystems. Hydrol. Process. 13: 497-513.Google Scholar
  27. Pisces Conservation, 1998. α Species Diversity and Richness. Pisces Conservation Ltd, Lymington, Hampshire.Google Scholar
  28. Pitty, A. F., 1976. Water temperatures of the limestone areas of the central and southern Pennines. Proc. Yorkshire Geol. Soc. 40: 601-612.Google Scholar
  29. Ponder, W. F., 1985. South Australian mound springs: relict faunas in the desert. Aust. Nat. Hist. 21: 352-355.Google Scholar
  30. Rosi-Marshall, E. J. & J. B. Wallace, 2002. Invertebrate food webs along a stream resource gradient. Freshwat. Biol. 47: 129-141.Google Scholar
  31. Ryen, M. & J. Meiman, 1996. An examination of short-term variations in water quality in a karst spring in Kentucky. Groundwater 34: 23-30.Google Scholar
  32. Smith, H., 2000.The hydro-ecology of limestone springs in the Wye Valley, Derbyshire. Unpublished PhD thesis, University of Huddersfield.Google Scholar
  33. Smith, H., J. Gunn & P. J. Wood, 2001. The macroinvertebrate communities of limestone springs of theWye Valley Derbyshire. Cave and Karst Sci. 28: 67-78.Google Scholar
  34. Smith, H. & P. J. Wood, 2002. Flow permanence and macroinvertebrate community variability in limestone spring systems. Hydrobiologia 487: 45-58.Google Scholar
  35. Sommerhäuser, M., B. Robert & H. Schuhmacher, 1996. Flight periods and life strategies of caddisflies in temporary and perennial woodland brooks in the Lower Rhine Area (Germany). Proceedings of the Eighth International Symposium on Trichoptera, Minneapolis/St Paul, July 1995: 425-433.Google Scholar
  36. ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, NY, U.S.A.: 352 pp.Google Scholar
  37. Townsend, C. R., A. G. Hildrew & K. Schofield, 1987. Persistence of stream communities in relation to environmental variability.J. anim. Ecol. 56: 597-613.Google Scholar
  38. van der Kamp, G., 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. J. Kans. Entomol. Soc. Suppl. 68: 4-17.Google Scholar
  39. Webb, D. W., M. J. Wetzel, P. C. Reed, L. R. Phillippe & T. C. Young, 1998. The macroinvertebrate biodiversity, water quality, and hydrogeology of ten karst springs in the Salem Plateau Section of Illinois, U.S.A. In Botosaneanu, L. (ed.), Studies in Crenobiology: The Biology of Springs and Springbrooks. Backhuys Publishers, Leiden: 39-48.Google Scholar
  40. Wiggins, G. B.,R. J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Arch. Hydrobiol. suppl. 58: 97-206.Google Scholar
  41. Williams, D. D., 1991. The spring as an interface between groundwater and lotic faunas and as a tool in assessing groundwater quality. Verh. int. Ver. Theor. Angew. Limnol. 24: 1621-1624.Google Scholar
  42. Williams, D. D., 1996. Environmental constraints in temporary fresh waters and their consequences for the insect fauna. J. N. am. benthol. Soc. 15: 634-650.Google Scholar
  43. Williams, D. D. & N. E. Williams, 1993. The upstream/downstream movement paradox of lotic invertebrates: quantitative evidence from a Welsh mountain stream. Freshwat. Biol. 30: 199-218.Google Scholar
  44. Williams, D. D. & N. E. Williams, 1998. Invertebrate communities from freshwater springs: what can they contribute to pure and applied ecology? In Botosaneanu, L. (ed.), Studies in Creno-biology: The Biology of Springs and Springbrooks. Backhuys Publishers, Leiden: 251-261.Google Scholar
  45. Williams, D. D. & N. E. Williams, 1999. Canadian Springs: postglacial development of the invertebrate fauna. In Batzer, D. P., R. Rader & S. A. Wissinger (eds), Invertebrates in Freshwater Wetlands of North America: Ecology and Management. John Wiley and Sons, New York: 447-467.Google Scholar
  46. Williams, D. D., N. E. Williams & Y. Cao, 1997. Spatial differences in macroinvertebrate community structure in southeastern Ontario in relation to their chemical and physical environments. Can. J. Zool. 75: 1404-1414.Google Scholar
  47. Williams, D. D., N. E. Williams & Y. Cao, 2000. Road salt contamination of groundwater in a major metropolitan area and development of a biological index to monitor its impact. Water Res. 34: 127-138.Google Scholar
  48. Wood P. J. & P. D. Armitage, 1999. Sediment deposition in a small lowland stream - management implications. Regul. Rivers: Res. Manage. 15: 199-210.Google Scholar
  49. Wood, P. J., D.M. Hannah, M. D. Agnew & G. E. Petts, 2001. Scales of hydroecological variability within a groundwater-dominated stream. Regul. Rivers: Res. Manage. 17: 347-367.Google Scholar
  50. Zollhöfer, J. M., 1999. Spring biotopes in Northern Switzerland: Habitat Heterogeneity, Zoobenthic Communities and Colonization Dynamics. PhD Thesis, Swiss Federal Institute of Science and Technology, Zürich.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • H. Smith
    • 1
  • P.J. Wood
    • 2
  • J. Gunn
    • 3
  1. 1.Pennine Water Group, School of Engineering, Design and TechnologyUniversity of BradfordBradford
  2. 2.Department of GeographyLoughborough UniversityLoughborough, LeicestershireU.K
  3. 3.Limestone Research Group, Geographical SciencesUniversity of HuddersfieldQueensgate, Huddersfield

Personalised recommendations