, Volume 510, Issue 1–3, pp 39–52

Rapid assessment of rivers using macroinvertebrates: the role of experience, and comparisons with quantitative methods

  • Leon Metzeling
  • Bruce Chessman
  • Rodney Hardwick
  • Vera Wong


We assessed rapid biological assessment (RBA) of macroinvertebrate communities in comparison with quantitative sampling at 18 pairs of river sites in south-eastern Australia. One member of each pair served as a reference site and the other was affected by mild to moderate human disturbance from a point or diffuse source (fish farm effluents, small municipal sewage discharges, a dam, agriculture and grazing). Samples were taken from riffles, stream edges and rocks in pools, mostly using hand nets (RBA) and Hess samplers (quantitative). Macroinvertebrates in RBA samples were always subsampled by live-picking by eye on site for 30 min. Comparisons were made between novice operators (university undergraduates) and experienced river biologists in the application of RBA, including sample identification. Quantitative samples were collected only by experienced river biologists, preserved and picked under stereomicroscopes in the laboratory, either in their entirety or after mechanical subsampling. Specimens were identified to family level for both methods. Novices recorded slightly fewer families than experts and misidentified some specimens, and expert data for the same site and habitat were on average more consistent than novice data. Nevertheless, Procrustes analysis of ordinations showed that differences between RBA and quantitative data did not depend on the type of RBA operator. And regardless of the operator, RBA data were better than quantitative data at discriminating between reference and disturbed sites for all three habitat types. We conclude that this type of RBA is sensitive and cost-effective, and we recommend improvements to inter-operator consistency.

rapid bioassessment benthic macroinvertebrates metrics inter-operator comparisons role of experience 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbour, M. T., J. L. Plafkin, B. P. Bradley, C. G. Graves & R. W. Wisseman, 1992. Evaluation of EPA's rapid bioassessment benthic metrics: metric redundancy and variability among reference stream sites. Environ. Toxicol. Chem. 11: 437-449.Google Scholar
  2. Barbour, M. T., J. Gerritsen, G. E. Griffith, R. Frydenborg, E. McCarron, J. S. White & M. L. Bastian, 1996. A frameworkfor biological criteria for Florida streams using benthic macroinvertebrates. J. n. am. Benthol. Soc. 15: 185-211.Google Scholar
  3. Beisel, J-N., P. Usseglio-Polatera, S. Thomas & J-C. Moreteau, 1998. Effects of mesohabitat sampling strategy on the assessment of stream quality with benthic invertebrate assemblages. Archiv für Hydrobiol. 142: 493-510.Google Scholar
  4. Belbin, L., 1993. PATN Pattern Analysis Package. Technical Reference.CSIRO Division of Wildlife and Ecology, Canberra.Google Scholar
  5. Bournaud, M., B. Cellot, P. Richoux & A. Berrahou, 1996. Macroinvertebrate community structure and environmental characteristics along a large river: congruity of patterns for identification tospecies or family. J. n. am. Benthol. Soc. 15: 232-253.Google Scholar
  6. Bowman, M. F. & R. C. Bailey, 1997. Does taxonomic resolution affect the multivariate description of the structure of freshwater benthic macroinvertebrate communities Can. J. Fish. aquat. Sci. 54: 1802-1807.Google Scholar
  7. Bunn, S. E. & P.M. Davies, 1990.Why is the stream fauna of southwesternAustralia so impoverished? Hydrobiol. 194: 169-176.Google Scholar
  8. Camargo, J. A., 1993. Macrobenthic surveys as a valuable tool for assessing freshwater quality in the Iberian Peninsula. Environ. Monit. Ass. 24: 71-90.Google Scholar
  9. Chessman, B. C., 1986. Dietary studies of aquatic insects from two Victorian rivers. Aust. J. mar. Freshwat. Res. 37: 129-146.Google Scholar
  10. Chessman, B. C., 1995. Rapid assessment of rivers using macroinvertebrates: a procedure based on habitat-specific sampling, family-level identification, and a biotic index. Aust. J. Ecol. 20: 122-129.Google Scholar
  11. Chessman, B. C. & P. K. McEvoy, 1998. Towards diagnostic biotic indices for river macroinvertebrates. Hydrobiol. 364: 169-182.Google Scholar
  12. Chessman, B. C. & D. P. Robinson, 1987. Some effects of the 1982-83 drought on water quality and macroinvertebrate fauna in the lower La Trobe River, Victoria. Aust. J. mar. Freshwat. Res. 38: 289-299.Google Scholar
  13. Chessman, B. C. & S. A. Williams, 1999. Biodiversity and conservation of river macroinvertebrates on an expanding urban fringe: western Sydney, New South Wales, Australia. Pacific Conserv. Biol. 5: 36-55.Google Scholar
  14. Chessman, B. C., J. E. Growns & A. R. Kotlash, 1997. Objective derivation of macroinvertebrate family sensitivity grade numbers for the SIGNAL biotic index: application to the Hunter River system, New South Wales. Mar. Freshwat. Res. 48: 159-172.Google Scholar
  15. Fore, L. S., J. R. Karr & R. W. Wisseman, 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. J. n. am. Benthol. Soc. 15: 212-231.Google Scholar
  16. Fore, L. S., K. Paulsen & K. O'Laughlin, 2001. Assessing the performance of volunteers in monitoring streams. Freshwat. Biol. 46: 109-123.Google Scholar
  17. Growns, J. E., B. C. Chessman, P. K. McEvoy & I. A. Wright, 1995. Rapid assessment of rivers using macroinvertebrates: case studies in the Nepean River and Blue Mountains, NSW. Aust. J. Ecol. 20: 130-141.Google Scholar
  18. Growns, J. E., B. C. Chessman, J. E. Jackson & D. G. Ross, 1997. Rapid assessment of Australian rivers using macroinvertebrates: cost and efficiency of 6 methods of sample processing. J. n. am. Benthol. Soc. 16: 682-693.Google Scholar
  19. Guerold, F., 2000. Influence of taxonomic determination level on several community indices. Wat. Res. 34: 487-492.Google Scholar
  20. Hannaford, M. J. & V. H. Resh, 1995. Variability of macroinvertebrate rapid-bioassessment surveys and habitat assessments in a northern California stream. J. n. am. Benthol. Soc. 14: 430-439.Google Scholar
  21. Hewlett, R., 2000. Implications of taxonomic resolution and sample habitat for stream classification at a broad geographic scale. J. n. am. Benthol. Soc. 19: 352-361.Google Scholar
  22. Humphrey, C. L., A. W. Storey & L. Thurtell, 2000. AUSRIVAS: operator sample processing errors and temporal variability - implications for model sensitivity. Assessing the Biological Quality of Fresh Waters. RIVPACS and Other Techniques In Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), Freshwater Biological Association, Ambleside: 143-163.Google Scholar
  23. Kerans, B. L., J. R. Karr & S. A. Ahlstedt, 1992. Aquatic invertebrate assemblages: spatial and temporal differences among sampling protocols. J. n. am. Benthol. Soc. 11: 377-390.Google Scholar
  24. Lenat, D. R., 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. n. am. Benthol. Soc. 7: 222-233.Google Scholar
  25. Marchant, R., 1989. A subsampler for samples of benthic invertebrates. Bull. Aust. Soc. Limmnol. 12: 49-52.Google Scholar
  26. Marchant, R., 1990. Robustness of classification and ordination techniques applied to macroinvertebrate communities from the La Trobe River, Victoria. Aust. J. mar. Freshwat. Res. 41:, 493-504.Google Scholar
  27. Marchant, R., A. Hirst, R. H. Norris, R. Butcher, L. Metzeling & D. Tiller, 1997. Classification and prediction of macroinvertebrate assemblages from running waters in Victoria, Australia. J. n. am. Benthol. Soc. 16: 664-681.Google Scholar
  28. Marchant, R., A. Hirst, R. Norris & L. Metzeling, 1999. Classification of macroinvertebrate communities across drainage basins in Victoria, Australia: consequences of sampling on a broad spatial scale for predictive modelling. Freshwat. Biol. 41: 253-268.Google Scholar
  29. Metzeling, L. & J. Miller, 2001. Evaluation of the sample size used for the rapid bioassessment of rivers using macroinvertebrates. Hydrobiologia 444: 159-170.Google Scholar
  30. Metzeling, L., H. Bibrowska & R. Goudey, 1993. The Impact of Fish Farming on the Goulburn River. EPA Victoria Publication No. SRS 91/011, ISBN 0 7306 2891 4.Google Scholar
  31. Metzeling, L., F. McKenzie-Smith & R. St Clair, 1996. The Effect of Fish Farming on the Water Quality and Invertebrates of Two Upland Rivers. EPA Victoria Publication No. 482, ISBN 0 7306 2903 1.Google Scholar
  32. Palmer, C. G., J. H. O'Keefe & A. R. Palmer, 1991. Are macroinvertebrate assemblages in the Buffalo River, southern Africa, associated with particular biotopes? J. n. am. Benthol. Soc. 10: 349-357.Google Scholar
  33. Pardo, I. & P. D. Armitage, 1997. Species assemblages as descriptors of mesohabitats. Hydrobiologia, 344: 111-128.Google Scholar
  34. Pardo, I., I. C. Campbell & J. E. Brittain, 1998. Influence of dam operation on mayfly assemblage structure and life histories in two south-eastern Australian streams. Reg. Riv.: Res. Manage. 14: 285-295.Google Scholar
  35. Parsons, M. & R. H. Norris, 1996. The effect of habitat-specific sampling on biological assessment of water quality using a predictive model. Freshwat. Biol. 36: 419-434.Google Scholar
  36. Pettigrove, V., 1990. The importance of site selection in monitoring the macroinvertebrate communities of the Yarra River, Victoria. Environ. Monit. Ass. 14: 297-313.Google Scholar
  37. Resh, V. H. & J. K. Jackson, 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York: 195-233.Google Scholar
  38. Smith, M. J., W. R. Kay, D. H. D. Edwards, P. J. Papas, K. St J. Richardson, J. C. Simpson, A. M. Pinder, D. J. Cale, P. H. J. Horwitz, J. A. Davis, F. H. Yung, R. H. Norris & S. A. Halse, 1999. AusRivAS: using macroinvertebrates to assess ecological condition of rivers inWestern Australia. Freshwat. Biol. 41: 269- 282.Google Scholar
  39. Storey, A. W., D. H. D. Edward & P. Gazey, 1991. Surber and kick sampling: a comparison for the assessment of macroinvertebrate community structure in streams of south-western Australia. Hydrobiologia 211: 111-121.Google Scholar
  40. Taylor, B. R., 1997. Rapid assessment procedures: radical reinvention or just sloppy science? Human and Ecol. Risk Ass. 3: 1005-1016.Google Scholar
  41. Turak, E., L. K. Flack, R. H. Norris, J. Simpson & N. Waddell, 1999. Assessment of river condition at a large spatial scale using predictive models. Freshwat. Biol. 41: 283-298.Google Scholar
  42. Vinson, M. R. & C. P. Hawkins, 1996. Effects of sampling area and subsampling procedure on comparisons of taxa richness among streams. J. n. am. Benthol. Soc. 15: 392-399.Google Scholar
  43. Wilkinson, L., 1990. SYSTAT: The System for Statistics. Evanston, IL: SYSTAT Inc.Google Scholar
  44. Wright, I. A., B. C. Chessman, P. G. Fairweather & L. J. Benson, 1995. Measuring the impact of sewage effluent on the macroinvertebrate community of an upland stream: the effect of different levels of taxonomic resolution and quantification. Aust. J. Ecol. 20: 142-149.Google Scholar
  45. Wright, J. F., 1995. Development and use of a system for predicting the macroinvertebrate fauna of flowing waters. Aust. J. Ecol. 20: 181-197.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Leon Metzeling
    • 1
  • Bruce Chessman
    • 2
  • Rodney Hardwick
    • 2
  • Vera Wong
    • 1
  1. 1.Cooperative Research Centre for Freshwater Ecology, EPA VictoriaSouthbank
  2. 2.Department of Infrastructure, Planning and Natural ResourcesCentre for Natural ResourcesAustralia
  3. 3.Sinclair Knight MertzArmadaleAustralia

Personalised recommendations