, Volume 505, Issue 1–3, pp 199–215 | Cite as

A comparison of zooplankton communities in saline lakewater with variable anion composition

  • A.M. Derry
  • E.E. Prepas
  • P.D.N. Hebert


Although salinity and aquatic biodiversity are inversely related in lake water, the relationship between types of salts and zooplankton communities is poorly understood. In this study, zooplankton species were related to environmental variables from 12 lakes: three saline lakes with water where the dominant anions were SO4 and CO3, four saline lakes with Cl-dominated water, and five dilute, subsaline (0.5–3 gl−1 total dissolved solids) lakes of variable anion composition. Although this study comprised only 12 lakes, distinct differences in zooplankton communities were observed among the two groups of chemically defined saline lakes. Canonical correspondence analysis identified total alkalinity, sulphate, chloride, calcium, sodium, potassium, and total phosphorus as all contributing to the first two ordination axes (λ1 = 0.97 and λ2 = 0.62, P<0.05). The rotifer Brachionus plicatilis and the harpactacoid copepod Cletocamptus sp. prevailed lakes with Cl-dominated water. In contrast, the calanoid copepods Leptodiaptomus sicilis and Diaptomus nevadensis were dominant in the SO4/CO3-dominated lake water with elevated potassium (79–128 mg l−1) and total phosphorus concentrations (1322-2915 μg l−1). The contrasting zooplankton species distribution among these two saline lake types is likely explained by variable selective pressure on zooplankton and their predators from differing physiological tolerances to salt stress and specific ions. While inland saline lakes with Cl as the dominant anion are relatively rare in Canada and SO4/CO3 are the common features, our study provided an opportunity to compare zooplankton communities across the two groups of lakes.

community ionic composition saline lakes zooplankton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmann, M. & R. H. Peters, 1980. A simple reflectance method for the measurement of particulate pigment in lake water and its application to phosphorus-chlorophyll-seston relationships. Can. J. Fish. aquat. Sci. 37: 111–114.Google Scholar
  2. Bierhuizen, J. F. H. & E. E. Prepas, 1985. Relationship between nutrients, dominant ions, and phytoplankton standing crop in prairie saline lakes. Can. J. Fish. aquat. Sci. 42: 1588–1594.Google Scholar
  3. Blinn, D. W., 1993, Diatom community structure along physicochemical gradients in saline lakes. Ecology 74: 1246–1263.Google Scholar
  4. Bos, D. G., B. F. Cumming, C. E. Watters & J. P. Smol, 1996. The relationship between zooplankton, conductivity and lakewater ionic composition in 111 lakes from the Interior Plateau of British Columbia, Canada. Int. J. Salt Lake Res. 5: 1–15.Google Scholar
  5. Brandlova, J. Z. & C. H. Fernando, 1972. The Cladocera of Ontario with remarks on some species and distribution. Can. J. Zool. 50: 1373–1403.Google Scholar
  6. Brooks, J. L., 1957. The Systematics of North American Daphnia. Memoirs of the Connecticut Academy of Arts and Sciences 13: 1–180.Google Scholar
  7. Campbell, C. E. & E. E. Prepas, 1986. Evaluation of factors related to the unusually low chlorophyll levels in prairie saline lakes. Can. J. Fish. aquat. Sci. 43: 846–854.Google Scholar
  8. Camsell, C., 1917. Salt and gypsum deposits in district between Peace and Slave rivers, northern Alberta. Geological survey of Canada summary report no. 1916: 134–145.Google Scholar
  9. Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318.Google Scholar
  10. Chengalath, R., C. H. Fernando & M. G. George, 1971. Planktonic Rotifera of Ontario. Dept. of Biology, University of Waterloo, Ont. Biology series. 40 pp.Google Scholar
  11. Cuthbert, I. D. & P. del Giorgio, 1992. Toward a standard method of measuring color in freshwater. Limnol. Oceanogr. 37: 1319– 1326.Google Scholar
  12. Derry, A. M., P. D. N. Hebert & E. E. Prepas, 2003. Evolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approach. Limnol. Oceanogr. 48: 675–685.Google Scholar
  13. Devey, Jr. E. S. & G. B. Devey, 1971. The American species of Eubosmina seligo (Crustacea, Cladocera). Limnol. Oceanogr. 16: 201–218.Google Scholar
  14. Birge, E. A., 1959. The water fleas (Cladocera). In Edmondson, W. T. (ed.), Ward and Whipple's Freshwater Biology. John Wiley and Sons Inc. (NY): 677–740.Google Scholar
  15. Evans, J. C. & E. E. Prepas, 1996. Potential effects of climate change on ion chemistry and phytoplankton communities in prairie saline lakes. Limnol. Oceanogr. 41: 1063–1076.Google Scholar
  16. Evans, M. S., R. D. Robarts & M. T. Arts, 1995. Predicted versus actual determinations of algal production, algal biomass, and zooplankton biomass in a hypereutrophic, hyposaline prairie lake. Can. J. aquat. Sci. 52: 1037–1049.Google Scholar
  17. Forester, R. M., 1986. Determination of dissolved anion composition of ancient lakes from fossil ostracods. Geology 14: 796–798.Google Scholar
  18. Government & University of Alberta, 1969. Atlas of Alberta. University of Alberta Press in association with University of Toronto Press, Edmonton (AB): 7–8.Google Scholar
  19. Greenberg, A. E., L. S. Clesceri & A. D. Eaton, 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, American WaterWorks Association and Water Environment Federation, Washington, D.C. 193 pp.Google Scholar
  20. Hammer, U. T., 1986. Saline Ecosystems of the World. Dr. W. Junk Publishers, Dordrecht. 616 pp.Google Scholar
  21. Hammer, U. T., 1993. Zooplankton distribution and abundance in saline lakes of Alberta and Saskatchewan, Canada. Int. J. Salt Lake Res. 2: 111–132.Google Scholar
  22. Herbst, D. B., 2001. Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters. Hydrobiologia 466: 209–219.Google Scholar
  23. Jellison, R., L. G. Miller, J. M. Melack & G. L. Dana, 1993. Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. Limnol. Oceanogr. 38: 1020–1039.Google Scholar
  24. Keller, W. & M. Conlin, 1994. Crustacean zooplankton communities and lake morphometry in Precambrian Shield lakes. Can. J. Fish. aquat. Sci. 51: 2424–2434.Google Scholar
  25. Koel, T. M. & J. J. Peterka, 1995. Survival to hatching of fishes in sulfate-saline waters, Devils Lake, North Dakota. Can. J. Fish. aquat. Sci. 52: 464–469.Google Scholar
  26. Last, W. M., 1992. Chemical composition of saline and subsaline lakes of the northern Great Plains, western Canada. Int. J. Salt Lake Res. 1: 47–76.Google Scholar
  27. Leland, H. V. & W. R. Berkas, 1998. Temporal variation in plankton assemblages and physicochemistry of Devils Lake, North Dakota. Hydrobiologia 377: 57–71.Google Scholar
  28. Meijer Drees, N.C., 1986. Evaporitic deposits of Western Canada. Geological survey of Canada. paper 85–20: 45, 51.Google Scholar
  29. Menzel, D. W. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10: 280–282.Google Scholar
  30. Moser, K. A., J. P. Smol, D. R. S. Lean & G. M. MacDonald, 1998. Physical and chemical limnology of northern boreal lakes, Wood Buffalo National Park, northern Alberta, and the Northwest Territories, Canada. Hydrobiologia 377: 25–43.Google Scholar
  31. Nelson, J. S. & M. J. Paetz, 1992. The Fishes of Alberta. University of Alberta Press, Edmonton (AB). 437 pp.Google Scholar
  32. Pienitz, R., J. P. Smol & D. R. S. Lean, 1997. Physical and chemical limnology of 24 lakes located between Yellowknife and Contwoyto Lake, Northwest Territories (Canada). Can. J. Fish. aquat Sci. 54: 347–358.Google Scholar
  33. Prepas, E. E. & F. H. Rigler, 1982. Improvements in quantifying the phosphorus concentration in lake water. Can. J. Fish. aquat. Sci. 39: 822–829.Google Scholar
  34. Pfaff, J. D., 1993. Determination of inorganic anions by ion chromatography, revision 2.1, EPA method 300.0. United States Environmental Protection Agency Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnati (OH) 45268.Google Scholar
  35. Rühland, K. & J. P. Smol, 1998. Limnological characteristics of 70 lakes spanning arctic treeline from Coronation Gulf to Great Slave Lake in the Central Northwest Territories, Canada. Int. Rev. Hydrobiol. 83: 183–203.Google Scholar
  36. Smith, K. & C. H. Fernando, 1978. A Guide to the Freshwater Calanoid and Cyclopoid Copepod Crustacea of Ontario. Dept. of Biology, University of Waterloo (ON), Biology series. 74 pp.Google Scholar
  37. Stainton, M. P., M. J. Capel & F. A. J. Armstrong, 1977. The chemical analysis of freshwater, 2nd ed. Fish. Environ. Can. Misc. Spec. Publ. 25: 180. Available on request from the Freshwater Institute, Winnipeg (MN).Google Scholar
  38. Stemberger, R. S., 1979. A Guide to Rotifers of the Laurentian Great Lakes. U.S. Environmental Protection Agency Rep. No. EPA-600-14-79-021. 185 pp.Google Scholar
  39. ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO 4.0 Reference Manual and User's Guide to Canoco for Windows: software for canonical community ordination (version 4.0). Microcomputer Power, Ithaca (NY). 351 pp.Google Scholar
  40. Tones, P. I. & U. T. Hammer, 1975. Osmoregulation in Trichocorixa verticalis interiores Sailer (Hemiptera, Corixidae) – an inhabitant of Saskatchewan saline lakes, Canada. Can. J. Zool. 53: 1207–1212.Google Scholar
  41. Toth, J., 1999. Groundwater as a geologic event: an overview of the causes, processes, and manifestations. Hydrogeol. J. 7: 1–14.Google Scholar
  42. Waiser, M. J. & R. D. Robarts, 1995. Microbial nutrient limitation in prairie saline lakes with high sulfate concentration. Limnol. Oceanogr. 40: 566–574.Google Scholar
  43. Wetzel, R. G., 1983. Limnology, 3rd ed. Saunders College Publishing, Toronto (ON). 767 pp.Google Scholar
  44. Williams, W. D., 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201.Google Scholar
  45. Winter, T. C., 1989. Distribution of the difference between precipitation and open-water evaporation in North America, Surface Water Hydrology. In U.S. Geological Survey (ed.), The Geology of North America V. 0-1. The Geological Society of America Inc., Boulder (CO), plate 2.Google Scholar
  46. Wurtsbaugh, W. A. & T. S. Berry, 1990. Cascading effects of decreased salinity on the plankton, chemistry, and physics of the Great Salt Lake (Utah). Can. J. Fish. aquat. Sci. 47: 100–109.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A.M. Derry
    • 1
  • E.E. Prepas
    • 2
  • P.D.N. Hebert
    • 3
  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of BiologyQueens UniversityKingstonCanada
  3. 3.Department of ZoologyUniversity of GuelphGuelphCanada

Personalised recommendations