, Volume 505, Issue 1–3, pp 129–138 | Cite as

Microcystin occurrence in lakes in Åland, SW Finland

  • Tore Lindholm
  • Pia Vesterkvist
  • Lisa Spoof
  • Catharina Lundberg-Niinistö
  • Jussi Meriluoto


Samples from a total of 134 lakes, practically all freshwater lakes in Åland, SW Finland, were screened for microcystins, hepatotoxic peptides of cyanobacteria, using high performance liquid chromatography (HPLC), time-resolved fluoroimmunoassay (TR-FIA), and protein phosphatase inhibition (PPIA) during two summers. Microcystins were recorded in 4 of 54 lakes in 1999 and 14 of 134 lakes in 2000, especially in eutrophic lakes but also in some dystrophic lakes and one oligotrophic. There was a satisfactory agreement between results obtained with different methods. The most likely microcystin-producers involved, as judged by microscopical examination, were Planktothrix agardhii, Microcystis aeruginosa, and Anabaena lemmermannii. One drinking-water reservoir and several lakes used for irrigation were microcystin-positive. Microcystins were also detected in late autumn samples from some eutrophic lakes.

microcystin toxin cyanobacteria lakes HPLC TR-FIA PPIA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carmichael, W.W., 1996. Toxic Microcystis and the environment. In Watanabe, M. F. (ed.), Toxic Microcystis. CRC Press, Inc. Boca Raton: 1–11.Google Scholar
  2. Cedercreutz, C., 1934. Die Algenflora und Algenvegetation auf Åland. Acta Bot. Fenn. 15: 1–120.Google Scholar
  3. Cedercreutz, C., 1947. Die Gefässpflanzenvegetation der Seen auf Åland. Acta Bot. Fenn. 38: 1–77.Google Scholar
  4. Chorus, I., 2001. Cyanotoxins – occurrence, causes, consequences. Springer, Berlin. 357 p.Google Scholar
  5. Chorus, I. & J. Bartram, 1999. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management. WHO. E & FN Spon, London. 416 p.Google Scholar
  6. Codd, G. A., S. G. Bell, K. Kaya, C. J. Ward, K. A. Beattie & J. S. Metcalf, 1999. Cyanobacterial toxins, exposure routes and human health. Eur. J. Phycol. 34: 405–415.Google Scholar
  7. Eriksson, J. E., J. A. O. Meriluoto & T. Lindholm, 1986. Can cyanobacterial toxins accumulate in aquatic food chains? In Megusar, F. & M. Gantar (eds), Perspectives in Microbial Ecology. Proc. 4th Int. Symp. Microbial Ecol., Ljubljana, Yugoslavia: 655–658.Google Scholar
  8. Fontal, O. I., M. R. Vieytes, J. M. V. Baptista de Sousa, M. C. Louzao & L. M. Botana, 1999. A fluorescent microplate assay for microcystin-LR. Anal. Biochem. 269: 289–296.Google Scholar
  9. Gee, K. R., W.-C. Sun, M. K. Bhalgat, R. H. Upson, D. H. Klaubert, K. A. Latham & R. P. Haugland, 1999. Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and ?-galactosidases. Anal. Biochem. 273: 41–48.Google Scholar
  10. Kotak, B., R. W. Zurawelli, E. E. Prepas & C. F. B. Holmes, 1996. Microcystin-LR concentration in aquatic food web compartments from lakes of varying trophic status. Can. J. Fish. aquat. Sci. 53: 1974–1985.Google Scholar
  11. Kukkonen, J., 1999. Syanobakteerien maksatoksiinien osoitusmenetelmien vertailu (in Finnish). Finnish Environment Institute, Helsinki. 64 p.Google Scholar
  12. Lampert, W., 1981. Inhibitory and toxic effects of blue-green algae on Daphnia. Int. Rev. ges. Hydrobiol. 66: 285–298.Google Scholar
  13. Lindholm, T., 1991. Från havsvik till insjö. Miljöförlaget, Helsinki/ Helsingfors. 160 p.Google Scholar
  14. Lindholm, T., 1996. A survey of small lakes in the archipelago of NW Åland (SW Finland). Memoranda Soc. Fauna Flora Fenn. 72: 31–36.Google Scholar
  15. Lindholm, T., M. Degerlund, L. Spoof & J. Meriluoto, 2002. A century of water quality changes in a coastal lake with toxic Planktothrix. Verh. int. Ver. Limnol., 28: 984–987.Google Scholar
  16. Lindholm, T. & J. E. Eriksson, 1990. Limnological changes in two recently isolated lakes. Limnologica 20: 273–278.Google Scholar
  17. Lindholm, T., J. E. Eriksson & J. A. O. Meriluoto, 1989. Toxic cyanobacteria and water quality problems – examples from a eutrophic lake on Åland, South West Finland. Water Res. 23: 481–486.Google Scholar
  18. Lindholm, T. & J. A. O. Meriluoto, 1991. Recurrent depth maxima of the hepatotoxic cyanobacterium Oscillatoria agardhii. Can. J. Fish. aquat. Sci. 48: 1629–1634.Google Scholar
  19. Lindholm, T., P. Öhman, K. Kurki-Helasmo, B. Kincaid & J. Meriluoto, 1999. Toxic algae and fish mortality in a brackishwater lake in Åland, SW Finland. Hydrobiologia 397: 109–120.Google Scholar
  20. Mehto, P., M. Ankelo, A. Hinkkanen, A. Mikhailov, J. E. Eriksson, L. Spoof & J. Meriluoto, 2001. A time-resolved fluoroimmunometric assay for detection of microcystins, cyanobacterial peptide hepatotoxins. Toxicon 39: 831–836.Google Scholar
  21. Meriluoto, J., 2000. Toxins of freshwater cyanobacteria (bluegreen algae). In Bogusz, M. J. (ed.), Handbook of Analytical Separations, vol. 2: Forensic Science. Elsevier, Amsterdam: 359–390.Google Scholar
  22. Meriluoto, J., L. Lawton & K.-i. Harada, 2000. Isolation and detection of microcystins and nodularins, cyanobacterial peptide hepatotoxins. In Holst, O. (ed.), Bacterial Toxins: Methods and Protocols. Humana Press, Totowa, NJ: 65–87.Google Scholar
  23. Mikhailov, A., A.-S. Härmälä-Braskén, J. Meriluoto, Y. Sorokina, D. Dietrich & J. E. Eriksson, 2001. Production and specificity of mono and polyclonal antibodies against microcystins conjugated through N-methyldehydroalanine. Toxicon 39: 477–483.Google Scholar
  24. Pflugmacher, S., C. Wiegand, K. A. Beattie, G. A. Codd & C. E. W. Steinberg, 1998. Uptake of cyanobacterial hepatotoxin microcystin-LR by aquatic macrophytes. J. Appl. Bot. 72: 228–232.Google Scholar
  25. Sipiä, V., H. Kankaanpää, K. Lahti, W. W. Carmichael & J. Meriluoto, 2001. Detection of nodularin in flounders and cod from the Baltic Sea. Environ. Toxicol. 16: 121–126.Google Scholar
  26. Sivonen, K., S. I. Niemelä, R. M. Niemi, L. Lepistö, T. H. Luoma & L. A. Räsänen, 1990. Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia 190: 267–275.Google Scholar
  27. Spoof, L., K. Karlsson & J. Meriluoto, 2001. High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on C18 and amide C16 sorbents. J. Chromatogr. A 909: 225–236.Google Scholar
  28. Tikkanen, T. & T. Willén, 1992. Växtplanktonflora. Statens Naturvårdsverk, Solna, Sweden. 280 p.Google Scholar
  29. Ueno, Y., S. Nagata, T. Tsutsumi, A. Hasegawa, F. Yoshida, M. Suttajt, D. Mebs, M. Pütsch & V. Vasconcelos, 1996 a. Survey of microcystins in environmental water by a highly sensitive immunoassay based on monoclonal antibody. Natural Toxins 4: 271–276.Google Scholar
  30. Ueno, Y., S. Nagata, T. Tsutsumi, A. Hasegawa, M. F. Watanabe, H-D. Park, G-C. Chen & S-Z. Yu, 1996 b. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 47: 1317–1321.Google Scholar
  31. Willén, T. & R. Mattsson, 1997. Water-blooming and toxinproducing cyanobacteria in Swedish fresh and brackish waters 1981–1995. Hydrobiologia 353: 181–192.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Tore Lindholm
    • 1
  • Pia Vesterkvist
    • 2
  • Lisa Spoof
    • 2
  • Catharina Lundberg-Niinistö
    • 2
  • Jussi Meriluoto
    • 2
  1. 1.Department of Biology and Husö Biological StationÅbo Akademi University, Akademigatan 1ÅboFinland
  2. 2.Department of Biochemistry and PharmacyÅbo Akademi University, BiocityÅboFinland

Personalised recommendations