, Volume 502, Issue 1–3, pp 307–314 | Cite as

Occurrence of Cryptophyceae and katablepharids in boreal lakes

  • Liisa Lepistö
  • Anna-Liisa Holopainen


One of the most important algal groups in Finnish lakes are the Cryptophyceae. Changes in the community structure of Cryptophyceae in a total of 22 lakes belonging to the Vuoksi river basin in eastern Finland were studied. The existence of lakes with water qualities varying from oligotrophic to eutrophic, often loaded by human activities, provides a good opportunity to study the effects of environmental variables on the occurrence and size variation of Cryptophyceae. In the Vuoksi river basin, the main soil type is moraine. Twelve of the lakes were large or moderately large and with clear, i.e. oligo-humic water, and one lake could be described as a small clear water lake. Eight large or moderately large lakes were humic, with a water colour number of 40–70 mg l−1 Pt, including three lakes impacted by nutrient loads. One lake was naturally eutrophic, with a high water colour number of 100 mg l−1 Pt, and was also impacted by municipal and pulping effluents. CCA-ordination analysis grouped the studied lakes into: (1) clear water lakes, (2) humic lakes and (3) the naturally eutrophic brown water lake. In the CCA-ordination analysis based on cell numbers small Cryptophyceae (Cryptomonadales), Rhodomonas lacustris and the katablepharid Katablepharis ovalis were grouped into the first axis, which was positively correlated with Secchi depth (r=0.58) and NO3N - nitrogen (r=0.24) and negatively with Ptot (r=-0.69), PO4P (r=-0.69) and water colour number (r=-0.66). In humic lakes, medium-sized Cryptophyceae were abundant. The naturally eutrophic lake was grouped into first axis, which is positively correlated with Ptot (r=0.69), PO4P (r=0.69) and water colour number (r=0.66). The lake formed a distinct group with large Cryptophyceae. Only in this lake was the heterotrophic Katablepharis ovalis rather abundant. However, large-sized taxa dominated the biomass of the Cryptophyceae assemblage in all lake types excluding large clear water lakes, where Rhodomonas lacustris dominated and large Cryptophyceae co-dominated.

Cryptophyceae community structure assemblages cell size variations phytoplankton quality of waters boreal lakes Eastern Finland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arvola, L., A. Ojala, F. Barbosa & S. I. Heaney, 1991. Migration behaviour of three Cryptophytes in relation to environmental gradients: an experimental approach. British Phycol. J. 26: 361–373.Google Scholar
  2. Arvola, L., P. Eloranta, M. Järvinen, J. Keskitalo & A.-L. Holopainen. 1999. Phytoplankton. In Keskitalo, J. & P. Eloranta (eds), Limnology of Humic Waters. Bachuys Publishers, Leiden, The Netherlands: 137–171.Google Scholar
  3. Arvola, L. & K. Salonen. 2001. Plankton community of a polyhumic lake with and without Daphnia longispina (Cladocera). Hydrobiologia 445: 141–150.Google Scholar
  4. Bergström, A.-K., M. Jansson, P. Blomqvist & S. Drakare. 2001. The influence of water colour and effective light climate on mixotrophic phytoflagellates in three small dystrophic Swedish lakes. Int. Ver. theor. angewand. Limnol: Verh 27: 1861-1865.Google Scholar
  5. Brettum, P., 1989. Alger som indikator på vannkvalitet i norske innsjøer. Planteplankton. [Algae as indicators of water quality in Norwegian lakes. Phytoplankton]. Niva-Rapport 0-86116. 111 pp.Google Scholar
  6. Bourrelly, P., 1970. Les algues d'eau douce 3. Les algues bleues et rouges, les Eugléniens, Péridiniens et Cryptomonadines. Éditions N. Boubée & Cie, Paris. 512 pp.Google Scholar
  7. Butcher, R.W., 1967. An introductory account of the smaller algae of British coastal waters. 4. Cryptophyceae. Fishery Investigations, Ser. 4, London. 54 pp.Google Scholar
  8. Forsberg, C. & S.-O. Ryding, 1980. Eutrophication parameters and trophic state indices in 30 Swedish waste-receiving lakes. Archiv für Hydrobiol. 89: 189–207.Google Scholar
  9. del Giorgio, P. A. & J. M. Gasol, 1995. Biomass distribution in freshwater plankton communities. Am. Nat. 146: 135–152.Google Scholar
  10. Haffner, G. D., G. P. Harris & M. K. Jarais, 1980. Physical variability and phytoplankton communities III. Vertical structure in phytoplankton populations. Archiv für Hydrobiol. 89: 363–381.Google Scholar
  11. Heinonen, P., 1980. Quantity and composition of phytoplankton in Finnish inland waters. Publications of the Water Research Institute 37. 91 pp.Google Scholar
  12. Jansson, M., P. Blomqvist & A. Jonsson, 1996. Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket. Limnol. Oceanogr. 41: 1552-1559.Google Scholar
  13. Javornický, P., 2001. Freshwater Rhodomonas (Cryptophyceae). Algol. Stud. 102: 93–116.Google Scholar
  14. Javornický, P., 2003. Taxonomic notes on some freshwater planktonic Cryptophyceae based on light microscopy. Hydrobiologia 502 (Dev. Hydrobiol. 172): 271–283.Google Scholar
  15. Järvinen, M., 2002. Control of plankton and nutrient limitation in small boreal brown-water lakes: evidence from small-and large scale manipulation experiments. Academic Dissertation in Hydrobiology. Dep. Ecol. And Systematic. University of Helsinki, Finland. 41 pp.Google Scholar
  16. Karjalainen, J., A.-L. Holopainen & P. Huttunen, 1996. Spatial patterns and relationships between phytoplankton, zooplankton and water quality in the Saimaa lake system, Finland. Hydrobiologia 322: 267–276.Google Scholar
  17. Kuusisto, E., 1978. Suur-Saimaan vesitase ja tulovirtaaman ennustaminen. [Forecasting of the water budget and the inflow in Lake Suur-Saimaa]. Publications of the Water Research Institute 26. 66 pp.Google Scholar
  18. Laine, P., 2001. Kohti vesiensuojelun aikaa; Veden laadun muutokset eteläisellä Saimaalla. Towards the time of water protection; the changes of water quality in the southern part of Lake Saimaa. Acta Universitatis Lappeenrantaensis 111. Dissertation, Lappeenranta University of Technology. 264 pp. English abstract.Google Scholar
  19. Lepistö, L., 1999. Phytoplankton assemblages reflecting the ecological status of lakes in Finland. Monographs of the Boreal Environment Research 16. 43 pp.Google Scholar
  20. Lepistö, L. & M. Saura, 1998. Effects of forest fertilization on phytoplankton in a boreal brown-water lake. Boreal Environ. Res. 3: 33––43.Google Scholar
  21. Lepistö, L., A. Räike & O.-P. Pietiläinen, 1999. Long-term changes of phytoplankton in a eutrophicated boreal lake during the past 100 years (1893-1998). Algol. Stud. 94: 223–244.Google Scholar
  22. Niemi, J., P. Heinonen, S. Mitikka, H. Vuoristo, O.-P. Pietiläinen, M. Puupponen & E. Rönkä, 2000. The Finnish EUROWATERNET: The European agencys monitoring network for Finnish inland waters. The Finnish Environment 445. 62 pp.Google Scholar
  23. Novarino, G., 2003. A Companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). Hydrobiologia 502 (Dev. Hydrobiol. 172): 225–270.Google Scholar
  24. OECD, 1982. Eutrophication of water, monitoring, assessment and control. Paris. 150 pp.Google Scholar
  25. Pietiläinen, O.-P. & A. Räike, 1999. Typpi ja fosfori Suomen sisävesien minimiravinteina. [Nitrogen and phosphorus as algal growth limiting nutrients in Finnish inland waters]. Suomen ympäristö 313. 64 pp. English abstract.Google Scholar
  26. Raatikainen, M. & E. Kuusisto, 1988. Suomen järvien lukumäärä ja pinta-ala. [The number and surface area of the lakes in Finland]. Terra 102: 97–110.Google Scholar
  27. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge. 384 pp.Google Scholar
  28. Reynolds, C. S., V. L. M. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417–428.Google Scholar
  29. Rosén, G., 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica 13: 263–290.Google Scholar
  30. Salonen, K., R. I. Jones & L. Arvola, 1984. Hypolimnetic phosphorus retrieval by diel vertical migrations of phytoplankton. Freshwat. Biol. 14: 431–438.Google Scholar
  31. Salonen, K., P. Kankaala, T. Tulonen, T. Hammar, M. James, T.-R. Metsälä & L. Arvola, 1992. Planktonic food chains of a highly humic lake. Hydrobiologia 229: 143–157.Google Scholar
  32. Salonen, K. & M. Rosenberg, 2000. Advantages from diel vertical migration can explain the dominance of Gonyostomum semen (Raphidophyceae) in a small, steeply-stratified humic lake. J. Plankton Res. 22: 1841-1853.Google Scholar
  33. Sciandra, A., L. Lazzara, H. Claustre & M. Babin, 2000. Responses of growth rate, pigment composition and optical properties of Cryptomonas sp. to light and nitrogen stress. Mar. Ecol. Prog. Ser. 201: 107–120.Google Scholar
  34. Smolander, U. & L. Arvola, 1988. Seasonal variation in the diel vertical distribution of the migratory alga Cryptomonas marssonii (Cryptophyceae) in a small, highly humic lake. Hydrobiologia 161: 89–98.Google Scholar
  35. Tardio, M., M. Tolotti, G. Novarino & M. Cantonati, 2003. Ecological and taxonomic observations on the flagellate algae characterising four years of enclosure experiments in Lake Tovel (Southern Alps). Hydrobiologia 502 (Dev. Hydrobiol. 172): 285–296.Google Scholar
  36. ter Braak, C. J. F. 1987. CANOCO - a FORTRAN program for canonical community ordinations by [partial] [detrended] [canonical] correspondence analysis and redundancy analysis (version 2.1). Agricultural Mathematics Group, Wageningen. 95 pp.Google Scholar
  37. ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen, 35 pp.Google Scholar
  38. Tranvik, L. J., K. G. Porter & J. McN. Sieburth, 1989. Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankton. Oecologia 78: 473–476.Google Scholar
  39. Wattson, S. & J. Kalff, 1981. Relationships between nanoplankton and lake trophic status. Can. J. Fish. aquat. Sci. 38: 960–967.Google Scholar
  40. Willén, E., 1992. Long-term changes in the phytoplankton of large lakes in response to changes in nutrient loading. Nord. J. Bot. 12: 577–587.Google Scholar
  41. Willén, E., 2000. Phytoplankton in water quality assessment - an indicator concept. In Heinonen, P., G. Ziglio & A. Van der Beken (eds), Hydrological and Limnological Aspects of Lake Monitoring. John Wiley & Sons, Ltd, Chichester: 57–80.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Liisa Lepistö
    • 1
  • Anna-Liisa Holopainen
    • 2
    • 3
  1. 1.Finnish Environment InstituteFinland
  2. 2.Karelian Research InstituteUniversity of Joensuu
  3. 3.North Karelian Environment centreJoensuuFinland

Personalised recommendations