Human Physiology

, Volume 30, Issue 4, pp 476–484 | Cite as

The Roles of Monoarticular and Biarticular Muscles of the Lower Limbs in Terrestrial Locomotion

  • A. V. Voronov


Specific features of the functioning of mono- and biarticular muscles were studied using a multijoint movement (a high jump) as an example. The powers of the knee and ankle joint extensors are insufficient for a strong and quick movement such as a high jump. Biarticular muscles (m. rectus femoris) transfer forces/powers from one joint to another, thereby compensating for the physiological shortcoming of monoarticular muscles, that is, a decrease in the tractive force with increasing contraction rate. In a high jump, a power of 300 W may be transferred from the hip to the knee joint via the m. rectus femoris; 230 W, from the knee to the hip joint via the hamstring muscle; 210 W, from the knee joint to the ankle via the m. gastrocnemius; and 15 W, from the metatarsophalangeal joint to the ankle via the mm. flexors.


Knee Joint Tractive Force Hamstring Muscle Contraction Rate Metatarsophalangeal Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Korenev, V.G., Ocherki mekhaniki tselenapravlennogo dvizheniya(Essays on the Mechanics of Purposeful Motion), Moscow: Nauka, 1980.Google Scholar
  2. 2.
    Prilutskii, B.I. and Zatsiorskii, V.M., Finding the Forces of Human Muscles by a Preset Movement, in Sovremennye problemy biomekhaniki(Modern Problems of Biomechanics), Nizhni Novgorod, 1993, issue 7, p. 81.Google Scholar
  3. 3.
    Biryukova, E.V., Modeling of Human Arm Movements, Biofizika, 1983, vol. 28, no. 4, p. 715.Google Scholar
  4. 4.
    Chow, C.K. and Jacobson, D.H., Studies of Human Locomotion via Optimal Programming, Math. Biosci., 1971, vol. 10, p. 239.CrossRefGoogle Scholar
  5. 5.
    Hatze, H., The Complete Optimization of a Human Motion, Math. Biosci., 1976, vol. 28, p. 99.CrossRefGoogle Scholar
  6. 6.
    Yeo, B.P., Investigation Concept: The Principle of Minimal Total Muscular Force, Biomechanics, 1976, vol. 9, p. 413.CrossRefGoogle Scholar
  7. 7.
    Fitzhugh, R.A., A Model of Optimal Voluntary Muscular Control, J. Math. Biol., 1977, vol.4, p. 203.PubMedGoogle Scholar
  8. 8.
    Chao, E.Y. and An, K.N., Graphical Interpolation of the Solution to the Redundant Problem in Biomechanics, J. Biomech. Eng., 1978, vol. 100, p. 159.Google Scholar
  9. 9.
    Crowninshield, R.D., Use of Optimization Techniques to Predict Muscle Forces,J. Biomech. Eng., 1978, vol. 100, p. 88.Google Scholar
  10. 10.
    Crowninshield, R.D. and Brand, R.A., A Physiologically Based Criterion of Muscle Force Prediction in Locomotion, J. Biomech., 1981, vol. 14, no. 11, p. 793.CrossRefPubMedGoogle Scholar
  11. 11.
    Hardt, D.E., Determination of Muscle Forces in the Leg during Normal Human Walking: An Application and Evaluation of Optimization Methods, J. Biomed. Eng., 1978, vol. 100, p. 72.Google Scholar
  12. 12.
    Pedotti, A. and Krishman, V.V., Optimization of Muscle-Force Sequencing in Human Locomotion, Math. Biosci., 1978, vol. 38, p. 57.CrossRefGoogle Scholar
  13. 13.
    Patriarco, A.G., Mann, R,W., Simon, S.R., and Mansour, J.M., An Evaluation of the Approaches of Optimization Models in the Prediction of Muscle Forces during Human Gait, J. Biomech., 1981, vol. 14, no. 8, p. 513.CrossRefPubMedGoogle Scholar
  14. 14.
    Raikova, T. and Prilutsky, B.I., Sensitivity of Predicted Muscle Forces to Parameters of the Optimization-based Human Leg Model Revealed by Analytical and Numerical Analyses, J. Biomech., 2001, vol. 34, p. 1243.CrossRefPubMedGoogle Scholar
  15. 15.
    An, K.N, Kaufman, K.R., and Chao, E.Y., Physiological Considerations of Muscle Force through the Elbow Joint, J. Biomech., 1989, vol. 22, no. 11, p. 1249.CrossRefPubMedGoogle Scholar
  16. 16.
    An, K.N., Kwak, B.M., Chao, E.Y., and Morrey, B.F., Determination of Muscle and Joint Forces: A New Technique to Solve the Indeterminate Problem, J. Biomed. Eng., 1984, vol. 106, p. 364.Google Scholar
  17. 17.
    Audu, M.L. and Davy, D.T., The Influence of Muscle Model Complexity in Musculoskeletal Motion Modeling, J. Biomed. Eng., 1985, vol. 107, p. 147.Google Scholar
  18. 18.
    Davy, D.T. and Audu, M.L., A Dynamic Optimization Technique for Predicting Muscle Forces in the Swing Phase of Gait, J. Biomech., 1987, vol. 20, no. 2, p. 187.CrossRefPubMedGoogle Scholar
  19. 19.
    Pandy, M.G., Zajak, F.E., Sim, D.G., and Levine, S.,An Optimal Control Model for Maximum-Height Human Jumping, J. Biomech., 1988, vol.23, no. 12, p. 1185.CrossRefGoogle Scholar
  20. 20.
    Karlsson, D. and Peterson, B., Towards a Model for Force Prediction of the Human Shoulder, J. Biomech., 1989, vol. 25, no. 2, p. 189.CrossRefGoogle Scholar
  21. 21.
    Herzog, W., Individual Muscle Force Prediction in Athletic Movements, PHD Thesis, Calgary, Canada: Univ.of Calgary, 1985.Google Scholar
  22. 22.
    Herzog, W. and Leonard, T.R., Validation of Optimization Models That Estimate the Forces Exerted by Synergistic Muscle, J. Biomech., 1991, vol. 24, suppl. 1, p. 31.CrossRefPubMedGoogle Scholar
  23. 23.
    Pandy, M.G., Anderson, F.C., and Hull, D.G., A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems, J. Biomech. Eng., 1992, vol. 114, p. 450.PubMedGoogle Scholar
  24. 24.
    Harding, D.C. Brandt, K.D., and Hillberry, B.M., Finger Joint Force Minimization in Pianists Using Optimization Techniques, J. Biomech., 1993, vol. 26, no. 12, p. 1403.CrossRefPubMedGoogle Scholar
  25. 25.
    Willinger, R. and Renault, D., Mathematical Model of Dynamic Muscular Behavior Force-Activity Relationship, Biomed. Eng., 1985, vol. 5, p. 251.Google Scholar
  26. 26.
    Bobbert, M.F., Huijing, P.A., and Shenau Jan van, I.,An Estimation of Power Output and Work Done by the Human Triceps Surae Muscle-Tendon Complex in Jumping, J. Biomech., 1986, vol. 19, p. 899.CrossRefPubMedGoogle Scholar
  27. 27.
    Shiping, M. and Zahalak, G.I., A Distribution-Moment Model of Energetics in Skeletal Muscle, J. Biomech., 1991, vol. 24, no. 1, p. 21.CrossRefPubMedGoogle Scholar
  28. 28.
    Raikova, R.A., General Approach for Modeling and Mathematical Investigation of the Human Upper Limb, J. Biomech., 1992, vol. 25, p. 857.CrossRefPubMedGoogle Scholar
  29. 29.
    Raikova, R.A., A Model of Flexion-Extension Motion in the Elbow Joint-Some Problems Concerning Muscle Forces Modeling and Computation, J. Biomech., 1996, vol. 29, no. 6, p. 763.CrossRefPubMedGoogle Scholar
  30. 30.
    Voronov, A.V. and Lavrovsky, E.K., Muscle Force Prediction Model in Speed Skating, Int. Soc. Biomech. XIV Congr., Paris, July 4-8, 1993, p. 1432.Google Scholar
  31. 31.
    Prilutsky, B.I., Herzog, W., and Allinger, T.L., Forces of Individual Cat Ankle Extensor Muscles during Locomotion Predicted Using Static Optimization, J. Biomech., 1997, vol. 30, no. 10, p. 1025.CrossRefPubMedGoogle Scholar
  32. 32.
    Prilutsky, B.I., Muscle Coordination: The Discussion Continues, Motor Control, 2000, vol. 4, p. 97.PubMedGoogle Scholar
  33. 33.
    Seireg, A. and Arvikar, R.J., A Mathematical Model for Evaluation of Forces in Lower Extremities of the Musculoskeletal System, J. Biomech., 1973, vol. 6, p. 313.CrossRefPubMedGoogle Scholar
  34. 34.
    de Luca, C. and Forrest, W.J., Force Analysis of Individual Muscles Acting Simultaneously on the Shoulder Joint during Isometric Abduction, J. Biomech., 1973, vol. 6, p. 385.CrossRefPubMedGoogle Scholar
  35. 35.
    Penrod, D.D., Davy, D.T., Singh, D.P., An Optimization Approach to Tendon Force Analysis, J. Biomech., 1974, vol. 7, p. 123.CrossRefPubMedGoogle Scholar
  36. 36.
    Hof, A.L. and van den Berg, J.W., Linearity between the Weighted Sum of EMG of the Human Triceps Surae and the Total Torque, J. Biomech., 1977, vol. 10, p. 529.CrossRefPubMedGoogle Scholar
  37. 37.
    Pedersen, D.R., Brand, R.A, Cheng, C., and Arora, J.S., Direct Comparison of Muscle Force Prediction Using Linear and Nonlinear Programming, J. Biomed. Eng., 1978, vol. 109, p. 192.Google Scholar
  38. 38.
    Gill, Mc.S., A Myoelectric Based Dynamic Three-Dimensional Model to Predict Loads on Lumbar Spine Tissues during Lateral Bending, J. Biomech., 1992, vol. 25, no. 4, p. 395.CrossRefPubMedGoogle Scholar
  39. 39.
    Icvhie, M., Handa, Y., Naito, A., and Matsushita, N., Hoshimiya EMG Analysis of the Thumb and Its Application to FNS, IEEE/Eighth Annu. Conf. of the Engineering in Med. and Biol. Soc., 1986, p. 538.Google Scholar
  40. 40.
    Bobet, J. and Norman, R.W., Least-Squares Identification of the Dynamic Relation between the Electromyogram and Joint Moment, J. Biomech., 1990, vol. 23,no. 12, p. 1275.CrossRefPubMedGoogle Scholar
  41. 41.
    Parker, P.A., Estimation of Muscle Force from Intramuscular Total Pressure, Med. Biomed. Eng. Comp., 1984, vol. 13, p. 453.Google Scholar
  42. 42.
    Hargens, A.R., Intramuscular Pressure and Electromyography as Indexes of Force during Isokinetic Exercise, J. Appl. Physiol., 1993, vol. 74, p. 2634.PubMedGoogle Scholar
  43. 43.
    Gregor, R.J., Komi, P.V., and Jarvinen, M., Achilles Tendon Forces during Cycling, Int. J. Soc. Sport Med., 1987, vol. 8, p. 9.Google Scholar
  44. 44.
    Komi, P.V., Salamon, M., Jarvinen, M., and Kokko, O., In VivoRegistration of Achilles Tendon Forces in Man: 1. Methodological Development, Int. J. Soc. Sport Med., 1987, vol. 8, p. 3.Google Scholar
  45. 45.
    Komi, P.V., Relevance of In VivoForce Measurements to Human Biomechanics, J. Biomech., 1990, vol. 23, p. 23.CrossRefPubMedGoogle Scholar
  46. 46.
    Herzog, W. and Leonard, T.R., Soleus Forces and Soleus Force Potential during Unrestrained Cat Locomotion, J. Biomech., 1996, vol. 29, no. 3, p. 271.CrossRefPubMedGoogle Scholar
  47. 47.
    Malaviya, P., Butler, D.L., Korvick, D.L., and Proch, F.S., In VivoTendon Forces Correlate with Activity Level and Remain Bounded: Evidence in a Rabbit Flexor Tendon Model, J. Biomech., 1998, vol. 31, no. 11, p. 1043.CrossRefPubMedGoogle Scholar
  48. 48.
    Lees, A., An Optimized Film Analysis Method Based on Finite Difference Technique, Hum. Movement Sci., 1980, vol. 4, p. 165.Google Scholar
  49. 49.
    Voronov, A.V. and Lavrovskii, E.K., Determination of Mass-Inertia Characteristics of a Human Leg, Fiziol. Chel., 1998, vol. 24, no. 2, p. 91.Google Scholar
  50. 50.
    Zatsiorskii, V.M., Aruin, A.S., and Seluyanov, V.N., Biomekhanika dvigatel'nogo apparata cheloveka(Biomechanics of the Human Motor Apparatus), Moscow: Fizkul'tura i Sport, 1981.Google Scholar
  51. 51.
    Voronov, A.V. and Lavrovskii, E.K., About Modeling Rational Variants of the Skating Technique, in Sovremennye problemy biomekhaniki(Modern Problems of Biomechanics), Nizhni Novgorod, 1992, issue 7, p. 144.Google Scholar
  52. 52.
    Voronov, A.V., Anatomicheskoe stroenie i biomekhanicheskie harakteristiki myshts i sustavov nizhnei konechnosti(The Anatomical Structure and Biomechanical Characteristics of the Lower Limb Muscles and Joints), Moscow: Fizkul'tura, Obrazovanie i Nauka, 2003.Google Scholar
  53. 53.
    Shalmanov, A.A., Sagitov, R.I., and Krylov, A.V., Four-Component Mechanical Model of a Muscle, in Modelirovanie sportivnoi deyatel'nosti v iskusstvenno sozdannoi srede (stendy, trenazhery, imitatory(Modeling Sports Activity in the Artificially Created Environment (Testing Units, Trainers, Imitators)), Moscow: Fizkul'tura, Obrazovanie i Nauka, 1999, p. 236.Google Scholar
  54. 54.
    Schenau Ingen Van, G.J., An Alternative View of the Concept of Utilization of Elastic Energy in Human Movement, Hum. Movement Sci., 1984, vol. 3, p. 301.CrossRefGoogle Scholar
  55. 55.
    Joyce, G.C. and Rack, P.M.H., Isotonic Lengthening and Shortening Movements of Cat Soleus Muscle,J. Physiol., 1969, vol. 204, p. 475.PubMedGoogle Scholar
  56. 56.
    Joyce, G.C., Rack, P.M.H., and Westerby, D.R., The Mechanical Properties of Soleus Muscle during Controlled Lengthening and Shortening Movements, J. Physiol., 1969, vol. 204, p. 461.PubMedGoogle Scholar
  57. 57.
    Schenau Ingen Van, G.J., From Rotation to Translation: Constraints on Multi-Joint Movements and the Unique Action of Bilateral Muscles, Hum. Movement Sci., 1989, vol. 8, p. 301.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. V. Voronov
    • 1
  1. 1.Moscow City Pedagogical UniversityMoscowRussia

Personalised recommendations