Advertisement

Heart Failure Reviews

, Volume 9, Issue 1, pp 7–19 | Cite as

MMP Induction and Inhibition in Myocardial Infarction

  • Merry L. Lindsey
Article

Abstract

Short-term survival following a myocardial infarction (MI) has greatly improved, due in part to therapeutic interventions that restore blood flow and limit infarct size. The increased incidence of infarct-stimulated left ventricular (LV) remodeling that advances to congestive heart failure (CHF), however, is a significant long-term complication and a leading cause of mortality. Changes to ECM structure and function are primary components of LV remodeling and are precipitated by the early increase in infarct area collagen levels that replace necrotic myocytes and form a scar. ECM turnover is coordinated through the synthesis and degradation of ECM and non-ECM components, particularly the matrix metalloproteinases (MMP), a family of proteolytic enzymes that cleave ECM. MMPs have multiple roles in remodeling events that lead to LV dilation. The inhibition or targeted deletion of specific MMPs attenuates LV remodeling events post-MI. MMP inhibitors have been used in animal models to delineate LV remodeling mechanisms and to evaluate the pharmacologic potential of targeting the ECM to modify LV remodeling post-MI. This review summarizes the current knowledge and limitations of MMP inhibition in the post-MI myocardium.

myocardial infarction extracellular matrix matrix metalloproteinases MMP inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CVD mortality rates decline. Life expectancy rises as a result; typical patients are older. Heart Advis 2003;6(4):3.Google Scholar
  2. 2.
    Fang J, Alderman MH. Dissociation of hospitalization and mortality trends for myocardial infarction in the United States from 1988 to 1997. The American Journalof Medicine 2002;113(3):208–214.Google Scholar
  3. 3.
    Velazquez EJ, O'Connor CM. Heart failure after myocardial infarction: A good heart is hard to find. Am Heart J 1999;138(6 Pt 1):1009–1011.PubMedGoogle Scholar
  4. 4.
    Yousef ZR, Redwood SR, Marber MS. Postinfarction left ventricular remodeling: A pathophysiological and therapeutic review. Cardiovasc Drugs Ther 2000;14(3):243–252.PubMedGoogle Scholar
  5. 5.
    Mann DL, Spinale FG. Activation of matrix metalloproteinases in the failing human heart. Circulation 1998;98:1699–1702.PubMedGoogle Scholar
  6. 6.
    Aumailley M, Gayraud B. Structure and biological activity of the extracellular matrix. J Mol Med 1998;76:253–265.PubMedGoogle Scholar
  7. 7.
    Weber KT. Extracellular matrix remodeling in heart failure. Circulation 1997;96:4065–4082.PubMedGoogle Scholar
  8. 8.
    Weber KT, Sun Y, Tyagi SC, Cleutjens JPM. Collagen network of the myocardium: Function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 1994;26:279–292.PubMedGoogle Scholar
  9. 9.
    Boudreau N, Bissell MJ. Extracellular matrix signaling: Integration of form and function in normal and malignant cells. Curr Opin Cell Biol 1998;10(5):640–646.PubMedGoogle Scholar
  10. 10.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiological Reviews 1999;79(1):215–262.PubMedGoogle Scholar
  11. 11.
    Scott-Burden T. Extracellular matrix: The cellular environment. NiPS 1994;9:110–115.Google Scholar
  12. 12.
    Kanekar S, Hirozanne T, Terracio L, Borg TK. Cardiac fibroblasts: Form and function. Cardiovascular Pathology 1998;7(3):127–133.Google Scholar
  13. 13.
    Birkedal-Hansen H, Cobb CM, Taylor RE, Fullmer HM. Synthesis and release of procollagenase by cultured fibroblasts. J of Biological Chemistry 1976;251(10):3162–3168.Google Scholar
  14. 14.
    Wang F, Trial J, Diwan A, Gao F, Birdsall H, Entman M, Hornsby P, Sivasubramaniam N, Mann D. Regulation of cardiac fibroblast cellular function by leukemia inhibitory factor. J Mol Cell Cardiol 2002;34(10):1309.PubMedGoogle Scholar
  15. 15.
    Reitamo S, Remitz A, Tamai K, Uitto J, Interleukin-10 modulates type I collagen and matrix metalloproteinase gene expression in cultured human skin fibroblasts. J of Clinical Investigation 1994;94:2489–2492.Google Scholar
  16. 16.
    Bond M, Fabunmi RP, Baker AH, Newby AC, Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: An absolute requirement for transcription factor NF-kappa B. FEBS Lett 1998;435(1):29–34.PubMedGoogle Scholar
  17. 17.
    Giambernardi TA, Grant GM, Taylor GP, Hay RJ, Maher VM, McCormick JJ, Klebe RJ. Overview of matrix metalloproteinase expression in cultured human cells. Matrix Biol 1998;16(8):483–496.PubMedGoogle Scholar
  18. 18.
    Overall CM, Wrana JL, Sodek J. Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-β. J of Biological Chemistry 1989;264(3):1860–1869.Google Scholar
  19. 19.
    Edwards DR, Leco KJ, Beaudry PP, Atadia PW, Veillette C, Riabowol KT. Differential effects of transforming growth factor-β1 on the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in young and old human fibroblasts. Experimental Gerontology 1996;31(1/2):207–223.PubMedGoogle Scholar
  20. 20.
    Ravanti L, Toriseva M, Penttinen R, Crombleholme T, Foschi M, Han J, Kahari VM. Expression of human collagenase-3 (MMP-13) by fetal skin fibroblasts is induced by transforming growth factor beta via p38 mitogen-activated protein kinase. Faseb J 2001;15(6): 1098–1100.PubMedGoogle Scholar
  21. 21.
    Smith LL, Cheung HK, Ling LE, Chen J, Sheppard D, Pytela R, Giachelli CM. Osteopontin N-terminal domain contains a cryptic adhesive sequence recognized by alpha9beta1 integrin. J Biol Chem 1996;271(45):28485–28491.PubMedGoogle Scholar
  22. 22.
    Leicht M, Briest W, Holzl A, Zimmer H-G. Serum depletion induces cell loss of rat cardiac fibroblasts and increased expression of extracellular matrix proteins in surviving cells. Cardiovascular Research 2001;52(3):429–437.PubMedGoogle Scholar
  23. 23.
    Van Wart HE, Birkedal-Hansen H. The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 1990;87(Biochemistry):5578–5582.PubMedGoogle Scholar
  24. 24.
    Tyagi SC, Matsubara L, Weber KT. Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clin Biochem 1993;26:191–198.PubMedGoogle Scholar
  25. 25.
    Rao CN, Mohanam S, Puppala A, Rao JS. Regulation of ProMMP-1 and ProMMP-3 activation by tissue factor pathyway inhibitor-2/matrix-associated serine protease inhibitor. Biochem Biophys Res Comm 1999;255:94–98.PubMedGoogle Scholar
  26. 26.
    Stroud JD, Baicu CF, Barnes MA, Spinale FG, Zile MR, Viscoelastic properties of pressure overload hypertrophied myocardium: Effect of serine protease treatment. Am J Physiol Heart Circ Physiol 2002;282(6):H2324–H2335.PubMedGoogle Scholar
  27. 27.
    Pei D, Weiss SJ. Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase a and express intrinsic matrix-degrading activity. J of Biological Chemistry 1996;271(15):9135–9140.Google Scholar
  28. 28.
    Kinoshita T, Sato H, Okada A, Ohuchi E, Imai K, Okada Y, Seiki M. TIMP-2 promotes activation of progelatinase a by membrane-type 1matrix metalloproteinase immobilized on agarose beads. J of Biological Chemistry 1998;273(26):16098–16103.Google Scholar
  29. 29.
    Itoh Y, Ito A, Iwata K, Tanzawa K, Mori Y, Nagase H. Plasma membrane-bound tissue inhibitor of metalloproteinases (TIMP)-2 specifically inhibits matrix metalloproteinase 2 (Gelatinase A) activated on the cell surface. J of Biological Chemistry 1998;273(38):24360–24367.Google Scholar
  30. 30.
    Cowell S, Knquper V, Stewart ML, D'Ortho M-P, Stanton H, Hembry RM, Lopez-Otin C, Reynolds JJ, Murphy G. Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: Associated activation of gelatinase A, gelatinase B and collagenase 3. Biochem J 1998;331:453–458.PubMedGoogle Scholar
  31. 31.
    Santavicca M, Noel A, Angliker H, Stoll I, Segain JP, Anglard P, Chretien M, Seidah N, Basset P. Characterization of structural determinants and molecular mechanisms involved in pro-stromelysin-3 activation by 4-aminophenylmercuric acetate and furin-type convertases. Biochem J 1996;315(Pt 3):953–958.PubMedGoogle Scholar
  32. 32.
    Pei D, Weiss SJ. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 1995;375(6528):244–247.PubMedGoogle Scholar
  33. 33.
    Cao J, Drews M, Lee HM, Conner C, Bahou WF, Zucker S. The propeptide domain of membrane type 1 matrix metalloproteinase is required for binding of tissue inhibitor of metalloproteinases and for activation of pro-gelatinase A. J Biol Chem 1998;273(52):34745–34752.PubMedGoogle Scholar
  34. 34.
    Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, van Westrum SS, Crabbe T, Clements J, d'Ortho M-P, Murphy G. The TIMP2 membrane type 1 metalloproteinase "Receptor" regulates the concentration and effi-cient activation of progelatinase A. J of Biological Chemistry 1998;273(2):871–880.Google Scholar
  35. 35.
    Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and marix degrading activity in vulnerable regions of human atherosclerotic plaques. J of Clinical Investigation 1994;94:2493–2503.Google Scholar
  36. 36.
    Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circ Res 2002;90(3):251–262.PubMedGoogle Scholar
  37. 37.
    Pyo R, Lee JK, Shipley JM, Curci JA, Mao D, Ziporin SJ, Ennis TL, Shapiro SD, Senior RM, Thompson RW. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 2000;105:1641–1649.PubMedGoogle Scholar
  38. 38.
    Carmeliet P. Proteinases in cardiovascular aneurysms and rupture: Targets for therapy? J Clin Invest 2000;105(11):1519–1520.PubMedGoogle Scholar
  39. 39.
    Silence J, Collen D, Lijnen HR. Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1(TIMP-1) gene. Circ Res 2002;90(8):897–903.PubMedGoogle Scholar
  40. 40.
    Nagatomo Y, Carabello BA, Coker ML, McDermott PJ, Nemoto S, Hamawaki M, Spinale FG. Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol Heart Circ Physiol 2000;278:H151–H161.PubMedGoogle Scholar
  41. 41.
    Chancey AL, Brower GL, Peterson JT, Janicki JS. Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 2002;105(16):1983–1988.PubMedGoogle Scholar
  42. 42.
    Cox MJ, Sood HS, Hunt MJ, Chandler D, Henegar JR, Aru GM, Tyagi SC. Apoptosis in the left ventricle of chronic volume overload causes endocardial endothelial dysfunction in rats. Am J Physiol Heart Circ Physiol 2002;282(4):H1197–H1205.PubMedGoogle Scholar
  43. 43.
    Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D'Armiento J. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 2000;106:857–866.PubMedGoogle Scholar
  44. 44.
    Lindsey M, Lee RT. MMP inhibition as a potential therapeutic strategy for CHF. Drug News Perspect 2000;13(6):350–354.PubMedGoogle Scholar
  45. 45.
    Li YY, Feldman AM. Matrix metalloproteinases in the progression of heart failure: Potential therapeutic implications, 2001.Google Scholar
  46. 46.
    Spinale FG. Matrix metalloproteinases: Regulation and dysregulation in the failing heart. Circ Res 2002;90(5):520–530.PubMedGoogle Scholar
  47. 47.
    Galis ZS, Johnson C, Godin D, Magid R, Shipley JM, Senior RM, Ivan E. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res 2002;91(9):852–859.PubMedGoogle Scholar
  48. 48.
    Clair MJ, Krombach RS, Coker ML, Heslin TL, Kribbs SB, de Gasparo M, Spinale FG. Angiotensin AT1 receptor inhibition in pacing induced heart failure: Effects on left ventricular myocardial collagen content and composition. J Mol Cell Cardiol 1998;30(11):2355–2364.PubMedGoogle Scholar
  49. 49.
    Spinale FG, Coker ML, Kromback SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, Zile MR. Matrix metalloproteinase inhibition during the development of congestive heart failure. Circ Res 1999;85:364–376.PubMedGoogle Scholar
  50. 50.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer 2002;2(3):163–176.Google Scholar
  51. 51.
    Stetler-Stevenson WG, Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J Clin Invest 1999;103(9):1237–1241.PubMedGoogle Scholar
  52. 52.
    Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 2001;21(7):1104–1117.PubMedGoogle Scholar
  53. 53.
    Cornelius LA, Nehring LC, Harding E, Bolanowshi M, Welgus HG, Kobayashi DK, Pierce RA, Shapiro SD. Matrix metalloproteinases generate angiostatin: Effects of neovascularization. J Immunol 1998;161(12):6845–6852.PubMedGoogle Scholar
  54. 54.
    Falcone DJ, Khan KMF, Layne T, Fernandes L. Macrophage formation of angiostatin during inflammation. A byproduct of the activation of plasminogen. J Biol Chem 1998;273(47):31480–31485.PubMedGoogle Scholar
  55. 55.
    Lijnen HR, Ugwu F, Bini A, Collen D. Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 1998;37:4699–4702.PubMedGoogle Scholar
  56. 56.
    Patterson BC, Sang QXA. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/Type IV collagenase (MMP-9). J Biol Chem 1997;272(46):28823–28825.PubMedGoogle Scholar
  57. 57.
    Sang QX. Complex role of matrix metalloproteinases in angiogenesis. Cell Res 1998;8(3):171–177.PubMedGoogle Scholar
  58. 58.
    Harkness KA, Adamson P, Sussman JD, Davies-Jones GA, Greenwood J, Woodroofe MN. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain 2000;123(Pt 4):698–709.PubMedGoogle Scholar
  59. 59.
    Tuckermann JP, Reichardt HM, Arribas R, Richter KH, Schutz G, Angel P. The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1-dependent genes in skin. J Cell Biol 1999;147(7):1365–1370.PubMedGoogle Scholar
  60. 60.
    Saito S, Katoh M, Masumoto M, Matsumoto S, Masuho Y. Dexamethasone inhibits collagen degradation induced by the combination of interleukin-1 and plasminogen in cartilage explant culture. Biol Pharm Bull 1999;22(7):727–730.PubMedGoogle Scholar
  61. 61.
    Oikarinen A, Haapasaari KM, Sutinen M, Tasanen K, The molecular basis of glucocorticoid-induced skin atrophy: Topical glucocorticoid apparently decreases both collagen synthesis and the corresponding collagen mRNA level in human skin in vivo. Br J Dermatol 1998;139(6):1106–1110.PubMedGoogle Scholar
  62. 62.
    Cha HJ, Park MT, Chung HY, Kim ND, Sato H, Seiki M, Kim KW. Ursolic acid-induced down-regulation of MMP-9 gene is mediated through the nuclear translocation of glucocorticoid receptor in HT1080 human fibrosarcoma cells. Oncogene 1998;16(6):771–778.PubMedGoogle Scholar
  63. 63.
    Benbow U, Brinckerhoff CE. The AP-1 site and MMP gene regulation: What is all the fuss about? Matrix Biol 1997;15(8/9):519–526.PubMedGoogle Scholar
  64. 64.
    Murono S, Yoshizaki T, Sato H, Takeshita H, Furukawa M, Pagano JS. Aspirin inhibits tumor cell invasiveness induced by Epstein-Barr virus latent membrane protein 1 through suppression of matrix metalloproteinase-9 expression. Cancer Res 2000;60(9):2555–2561.PubMedGoogle Scholar
  65. 65.
    Liacini A, Sylvester J, Li WQ, Zafarullah M. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B(NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol 2002;21(3):251–262.PubMedGoogle Scholar
  66. 66.
    Azuma M, Aota K, Tamatani T, Motegi K, Yamashita T, Ashida Y, Hayashi Y, Sato M. Suppression of tumor necrosis factor alpha-induced matrix metalloproteinase 9 production in human salivary gland acinar cells by cepharanthine occurs via down-regulation of nuclear factor kappaB: A possible therapeutic agent for preventing the destruction of the acinar structure in the salivary glands of Sjogren's syndrome patients. Arthritis Rheum 2002;46(6):1585–1594.PubMedGoogle Scholar
  67. 67.
    Philip S, Kundu GC. Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha/IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates these pathways. J Biol Chem 2003;278(16):14487–14497.PubMedGoogle Scholar
  68. 68.
    Sun Y, Wenger L, Rutter JL, Brinckerhoff CE, Cheung HS. p53 down-regulates human matrix metalloproteinase-1 (Collagenase-1) gene expression. J Biol Chem 1999; 274(17):11535–11540.PubMedGoogle Scholar
  69. 69.
    Arbelaez LF, Bergmann U, Tuuttila A, Shanbhag VP, Stigbrand T. Interaction of matrix metalloproteinases-2 and-9 with pregnancy zone protein and α2-Macroglobulin. Archives of Biochemistry and Biophysics 1997;347(1):62–68.PubMedGoogle Scholar
  70. 70.
    Nagase H, Itoh Y, Binner S. Interaction of α2-Macroglobulin with matrix metalloproteinases and its use for identification of their active forms. Annals Natl Acad Sci 1994;732:294–302.Google Scholar
  71. 71.
    Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: Biological actions and therapeutic opportunities. J Cell Sci 2002;115(19):3719–3727.PubMedGoogle Scholar
  72. 72.
    Grinnell F, Zhu M. Fibronectin degradation in chronic wounds depends on the relative levels of elastase, α1-proteinase inhibitor, and α2-macroglobulin. J Invest Dermatol 1996;106:335–341.PubMedGoogle Scholar
  73. 73.
    Justus CWE, Muller HP, Simon MM, Kramer MD. Quantification of free α2-macroglobulin and α2-macroglobulinprotease complexes by a novel ELISA system based on streptococcal α2-macroglobulin receptors. J of Immunological Methods 1990;126:103–108.Google Scholar
  74. 74.
    Moutsiakis D, Mancuso P, Krutzsch H, Stetler-Stevenson W, Zucker S. Characterization of metalloproteinases and tissue inhibitors of metallopteinases in human plasma. Connective Tissue Research 1992;28:213–230.PubMedGoogle Scholar
  75. 75.
    Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochimica et Biophysica Acta, 2000;1477:267–283.PubMedGoogle Scholar
  76. 76.
    Woessner JF, Jr. MMPs and TIMPs-an historical perspective. Mol Biotechnol 2002;22(1):33–49.PubMedGoogle Scholar
  77. 77.
    Bode W, Fernandez-Catalan C, Grams F, Gomis-Ruth FX, Nagase H, Tschesche H, Maskos K. Insights into MMP-TIMP interactions. Ann NY Acad Sci 1999;878:73–91.PubMedGoogle Scholar
  78. 78.
    Murate T, Hayakawa T. Multiple functions of tissue inhibitors of metalloproteinases (TIMPs): New aspects in hematopoiesis. Platelets 1999;10:5–16.Google Scholar
  79. 79.
    Leco KJ, Apte SS, Taniguchi GT, Hawkes SP, Khokha R, Schultz GA, Edwards DR. Murine tissue inhibitor of metalloproteinase-4 (Timp-4): cDNA isolation and expression in adult mouse tissues. FEBS Letters 1997;401:213–217.PubMedGoogle Scholar
  80. 80.
    Liu YE, Wang M, Greene J, Su J, Ullrich S, Li H, Sheng S, Alwxander P, Sang QA, Shi YE. Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4). J of Biological Chemistry 1997;272(33):20479–20483.Google Scholar
  81. 81.
    Gomex DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: Structure, regulation and biological functions. Eur J of Cell Biology 1997;74:111–122.Google Scholar
  82. 82.
    Moses MA. The regulation of neovascularization by matrix metalloproteinases and their inhibitors. Stem Cells 1997;15:180–189.PubMedGoogle Scholar
  83. 83.
    Zucker S, Lysik RM, Zarrabi HM, Moll U, Tickle SP, Stetler-Stevenson W, Baker TS, Docherty AJ. Plasma assay of matrix metalloproteinases (MMPs) and MMP-inhibitor complexes in cancer. Potential use in predicting metastasis and monitoring treatment. Ann NY Acad Sci 1994;732:248–262.PubMedGoogle Scholar
  84. 84.
    Forough R, Koyama N, Hasenstab D, Lea H, Clowes M, Nikkari ST, Clowes AW. Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell functions in vitro and in vivo. Circ Res 1996;79:812–820.PubMedGoogle Scholar
  85. 85.
    Johnson MD, Kim H-RC, Chesler L, Tsao-Wu G, Bouck N, Polverini PJ. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J of Cellular Physiology 1994;160:194–202.Google Scholar
  86. 86.
    Smith MR, Kung H, Durum SK, Colburn NH, Sun Y. TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine 1997;9(10):770–780.PubMedGoogle Scholar
  87. 87.
    Tyagi SC, Meyer L, Kumar S, Schmaltz RA, Reddy HK, Voelker DJ. Induction of tissue inhibitor of metalloproeinase and its mitogenic response to endothelial cells in human atherosclerotic and restenotic lesions. Can J Cardiol 1996;12(4):353–362.PubMedGoogle Scholar
  88. 88.
    Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nat Rev Cancer 2002;2(9):657–672.PubMedGoogle Scholar
  89. 89.
    Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 2001;107(6):789–800.PubMedGoogle Scholar
  90. 90.
    Welm B, Mott J, Werb Z. Developmental biology: Vasculogenesis is a wreck without RECK. Curr Biol 2002;12(6):R209–R211.PubMedGoogle Scholar
  91. 91.
    Cunningham AC, Hasty KA, Enghild JJ, Mast AE, Structural and functional characterization of tissue factor pathway inhibitor following degradation by matrix metalloproteinase-8. Biochem J 2002;367(Pt 2):451–458.PubMedGoogle Scholar
  92. 92.
    Belaaouaj AA, Li A, Wun T-C, Welgus HG, Shapiro SD, Matrix metalloproteinases cleave tissue factor pathway inhibitor. J Biol Chem 2000;275(35):27123–27128.PubMedGoogle Scholar
  93. 93.
    Davis GE, Bayless KJ, Davis MJ, Meininger GA. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am J of Pathology 2000;156(5):1489–1498.Google Scholar
  94. 94.
    Hornebeck W, Emonard H, Monboisse J-C, Bellon G. Matrix-directed regulation of pericellular proteolysis and tumor progression. Seminars in Cancer Biology 2002;12(3):231–241.PubMedGoogle Scholar
  95. 95.
    Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 2001;93(3):178–193.PubMedGoogle Scholar
  96. 96.
    Heggtveit HA. Morphological alterations in the ischaemic heart. Cardiology 1971/72;56:284–290.PubMedGoogle Scholar
  97. 97.
    Kim CB, Braunwald E. Potential benefits of late reperfusion of infarcted myocardium: The open artery hypothesis. Circulation 1993;88(5(1)):2426–2436.PubMedGoogle Scholar
  98. 98.
    Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 2002;53(1):31–47.PubMedGoogle Scholar
  99. 99.
    Kapadia S, Dibbs Z, Kurrelmeyer KM, Kalra D, Seta Y, Wang F, Bozkurt B, Oral H, Sivasubramanian N, Mann DL. The role of cytokines in the failing human heart: In Cardiology Clinics, Crawford M, ed., WB Saunders: Philadelphia. 1998:645–656.Google Scholar
  100. 100.
    MacGowan GA, Mann DL, Kormos RL, Feldman AM, Murali S. Circulating interleukin-6 in severe heart failure. Am J Cardiol 1997;79(8):1128–1131.PubMedGoogle Scholar
  101. 101.
    Tsutamoto T, Hisanaga T, Wada A, Maeda K, Ohnishi M, Fukai D, Mabuchi N, Sawaki M, Kinoshita M. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 1998;31(2):391–398.PubMedGoogle Scholar
  102. 102.
    Koller-Strametz J, Pacher R, Frey B, Kos T, Woloszczuk W, Stanek B. Circulating tumor necrosis factor-alpha levels in chronic heart failure: Relation to its soluble receptor II, interleukin-6, and neurohumoral variables. J Heart Lung Transplant 1998;17(4):356–362.PubMedGoogle Scholar
  103. 103.
    Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, Niebauer J, Hooper J, Volk HD, Coats AJ, Anker SD. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 2000;102(25):3060–3067.PubMedGoogle Scholar
  104. 104.
    Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: An analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 2001;103(16):2055–2059.PubMedGoogle Scholar
  105. 105.
    Ferrari R. Interleukin-6: A neurohumoral predictor of prognosis in patients with heart failure: Light and shadow. Eur Heart J 2002;23(1):9–10.PubMedGoogle Scholar
  106. 106.
    Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, Mann DL. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 2001;104(7):826–831.PubMedGoogle Scholar
  107. 107.
    Inokubo Y, Hanada H, Ishizaka H, Fukushi T, Kamada T, Okumura K. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J 2001;141(2):211–217.PubMedGoogle Scholar
  108. 108.
    Hirohata S, Kusachi S, Murakami M, Murakami T, Sano I, Watanabe T, Komatsubara I, Kondo J, Tsuji T. Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of acute myocardial infarction. Heart 1997;78:278–284.PubMedGoogle Scholar
  109. 109.
    Wilson EM, Gunasinghe HR, Coker ML, Sprunger P, Lee-Jackson D, Bozkurt B, Deswal A, Mann DL, Spinale FG. Plasma matrix metalloproteinase and inhibitor profiles in patients with heart failure. J Card Fail 2002;8(6):390–398.PubMedGoogle Scholar
  110. 110.
    Bradham WS, Gunasinghe H, Holder JR, Multani M, Killip D, Anderson M, Meyer D, Spencer WH, Torre-Amione G, Spinale FG. Release of matrix metalloproteinases following alcohol septal ablation in hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol 2002;40(12):2165–2173.PubMedGoogle Scholar
  111. 111.
    Jensen LR, Horslev-Petersen K, Toft P, Bentsen KD, Grande P, Simonsen EE, Lorenzen I. Serum aminoterminal type III procollagen peptide reflects repair after acute myocardial infarction. Circulation 1990;81:52–57.PubMedGoogle Scholar
  112. 112.
    Poulsen SH, Host NB, Jensen SE, Egstrup K. Relationship between serum amino-terminal propeptide of type III procollagen and changes of left ventricular function after acute myocardial infarction. Circulation 2000;101:1527–1532.PubMedGoogle Scholar
  113. 113.
    Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, Meyer J, Cambien F, Tiret L, and for the AtheroGene Investigators, Plasma Concentrations and Genetic Variation of Matrix Metalloproteinase 9 and Prognosis of Patients With Cardiovascular Disease. Circulation 2003;107(12):1579–1585.PubMedGoogle Scholar
  114. 114.
    Cleutjens JPM, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 1995;27:1281–1292.PubMedGoogle Scholar
  115. 115.
    Peterson JT, Li H, Dillon L, Bryant JW. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovascular Research 2000;46:307–315.PubMedGoogle Scholar
  116. 116.
    Romanic AM, Burns-Kurtis CL, Gout B, Berrebi-Bertrand I, Ohlstein EH. Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci 2001;68(7):799–814.PubMedGoogle Scholar
  117. 117.
    Rohde LE, Aikawa M, Cheng GC, Sukhova G, Solomon SD, Libby P, Pfeffer J, Pfeffer MA, Lee RT. Echocardiography-derived left ventricular end-systolic regional wall stress and matrix remodeling after experimental myocardial infarction. J of the American College of Cardiology 1999;33(3):835–842.Google Scholar
  118. 118.
    Lindsey M, Wedin K, Brown MD, Keller C, Evans AJ, Smolen J, Burns AR, Rossen RD, Michael L, Entman M. Matrix-dependent mechanism of neutrophilmediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation 2001;103:2181–2187.PubMedGoogle Scholar
  119. 119.
    Baghelai K, Marktanner R, Dattilo JB, Dattilo MPM, Jakoi E, Yager DR, Makhoul RG, Wechsler AS. Decreased expression of tissue inhibitor of metalloproteinase 1 in stunned myocardium. J of Surgical Research 1998;77:35–39.Google Scholar
  120. 120.
    Romanic AM, Harrison SM, Bao W, Burns-Kurtis CL, Pickering S, Gu J, Grau E, Mao J, Sathe GM, Ohlstein EH, Yue T-L. Myocardial protection from ischemia/ reperfusion injury by targeted deletion of matrix metalloproteinase-9. Cardiovascular Research 2002; 54(3):549–558.PubMedGoogle Scholar
  121. 121.
    Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000;106:55–62.PubMedGoogle Scholar
  122. 122.
    Heymans S, Luttun A, NuyensD, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JPM, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert J-M, Smits JFM, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJAP, Carmeliet P. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 1999;5(10):1135–1142.PubMedGoogle Scholar
  123. 123.
    Creemers EEJM, Davis JN, Parkhurst AM, Leenders P, Dowdy KB, Hapke E, Hauet AM, Escobar PG, Cleutjens JPM, Smits JFM, Daemen MJAP, Zile MR, Spinale FG. Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2003;284(1):H364–H371.PubMedGoogle Scholar
  124. 124.
    Lindsey ML, Gannon J, Aikawa M, Schoen FJ, Rabkin E, Lopresti-Morrow E, Crawford J, Black S, Libby P, Mitchell PG, Lee RT. Selective matrix metalloproteinase inhibition reduces left ventricular remodeling but does not inhibit angiogenesis after myocardial infarction. Circulation 2002;105(6):753–758.PubMedGoogle Scholar
  125. 125.
    Mukherjee R, Brinsa TA, Dowdy KB, Scott AA, Baskin JM, Deschamps AM, Lowry AS, Escobar GP, Lucas DG, Yarbrough WM, Zile MR, Spinale FG. Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation 2003;107(4):618–625.PubMedGoogle Scholar
  126. 126.
    Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, K inugawa S, Ide T, Wen J, Takeshita A. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 2002;105:868–873.PubMedGoogle Scholar
  127. 127.
    Mann DL. Basic mechanisms of disease progression in the failing heart: The role of excessive adrenergic drive. Progress in Cardiovascular Diseases 1998;41(1 Suppl 1):1–8.Google Scholar
  128. 128.
    Kurrelmeyer K, Kalra D, Bozkurt B, Wang F, Dibbs Z, Seta Y, Baumgarten G, Engle D, Sivasubramanian N, Mann DL. Cardiac remodeling as a consequence and cause of progressive heart failure. Clin Cardiol 1998;21(Suppl I):I14–I19.PubMedGoogle Scholar
  129. 129.
    Janicki JS, Brower GL, Henegar JR, Wang L. Ventricular remodeling in heart failure: The role of myocardial collagen. Adv Exp Med Biol 1995;382:239–245.PubMedGoogle Scholar
  130. 130.
    White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987;76(1):44–51.PubMedGoogle Scholar
  131. 131.
    Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene, 2000;19(56):6642–6650.PubMedGoogle Scholar
  132. 132.
    Coussens, LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science 2002;295(5564):2387–2392.PubMedGoogle Scholar
  133. 133.
    Bramhall SR, Hallissey MT, Whiting J, Scholefield J, Tierney G, Stuart RC, Hawkins RE, McCulloch P, Maughan T, Brown PD, Baillet M, Fielding JW. Marimastat as maintenance therapy for patients with advanced gastric cancer: A randomised trial. Br J Cancer 2002;86(12):1864–1870.PubMedGoogle Scholar
  134. 134.
    Greenwald RA. Thirty-six years in the clinic without an MMP inhibitor. What hath collagenase wrought? Ann NY Acad Sci 1999;878:413–419.PubMedGoogle Scholar
  135. 135.
    Backstrom JR, Tokes ZA. The 84-kDa form of human matrix metalloproteinase-9 degrades substance P and gelatin. J Neurochem 1995;64(3):1312–1318.PubMedGoogle Scholar
  136. 136.
    Diekmann O, Tschesche H, Degradation of kinins, angiotensins and substance P by polymorphonuclear matrix metalloproteinases MMP 8 and MMP 9. Braz J Med Biol Res 1994;27(8):1865–1876.PubMedGoogle Scholar
  137. 137.
    Fowlkes, JL, Thrailkill KM, Serra DM, Nagase H. Insulinlike growth factor binding protein (IGFBP) substrate zymography. A new tool to identify and characterize IGFBP-degrading proteinases. Endocrine 1997;7(1):33–36.PubMedGoogle Scholar
  138. 138.
    Fowlkes JL, Enghild JJ, Suzuki K, Nagase H. Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J Biol Chem 1994;269(41):25742–25746.PubMedGoogle Scholar
  139. 139.
    Liu Z, Zhou X, Shapiro SD, Shipley JM, Twining SS, Diaz LA, Senior RM, Werb Z. The serpin α1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 2000;102:647–655.PubMedGoogle Scholar
  140. 140.
    Lijnen HR, Arza B, Van Hoef B, Collen D, Declerck PJ. Inactivation of plasminogen activator-1 by specific proteolysis with stromelysin-1 (MMP-3). J Biol Chem 2000;275(48):37645–37650.PubMedGoogle Scholar
  141. 141.
    Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood 2000;96(8):2673–2681.PubMedGoogle Scholar
  142. 142.
    Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L. Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 2001;276(30):28261–28267.PubMedGoogle Scholar
  143. 143.
    Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW. Substrate hydrolysis by matrix metalloproteinase-9. J Biol Chem 2001;276(23):20572–20578.PubMedGoogle Scholar
  144. 144.
    Tyagi SC, Campbell SE, Reddy HK, Tjahja E, Voelker DJ. Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Molecular and Cellular Biochemistry 1996;155:13–21.PubMedGoogle Scholar
  145. 145.
    Herzog E, Gu A, Kohmoto T, Burkhoff D, Hochman JS. Early activation of metalloproteinases after experimental myocardial infarction occurs in infarct and non-infarct zones. Cardiovasc Pathol 1998;7:307–312.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Merry L. Lindsey
    • 1
  1. 1.Cardiothoracic SurgeyMedical University of South CarolinaCharlestonUSA

Personalised recommendations