Plant Growth Regulation

, Volume 43, Issue 1, pp 93–96 | Cite as

Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria

  • Z.S. Omer
  • R. Tombolini
  • A. Broberg
  • B. Gerhardson
Article

Abstract

In examining the presence of indole-3-acetic acid (IAA) in supernatants of pink-pigmented facultativemethylotrophic (PPFMs) bacterial cultures, three out of the 16 isolates tested showed a positive reaction ina colorimetric assay. The presence was further unambiguously con?rmed by high-performance liquidchromatography in combination with NMR. The IAA production was signi?cantly stimulated byL-tryptophan. These results prove that PPFM bacteria are able to produce the plant hormone IAA.

Auxin HPLC L-tryptophan Methylobacterium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atzorn R., Crozier A., Wheeler C.T. and Sandberg G.1988. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175: 532–538.Google Scholar
  2. Basile D.V., Basile M.R., Li Q.Y. and Corpe W.A. 1985. Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata Dum. (Hepaticae). Bryologist88: 77–81.Google Scholar
  3. Bastian F., Cohen A., Piccoli P., Luna V., Baraldi R. and Bottini R. 1998. Production of indole 3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul. 24: 7–11.CrossRefGoogle Scholar
  4. Corpe W.A. and Rheem S. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol. 62: 243–250.Google Scholar
  5. Freyermuth S.K., Long R.L., Mathur S., Holland M.A., Holtsford T.P., Stebbins N.E., Morris R.O. and Polacco J.C. 1996. Metabolic aspects of plant interaction with commensal methylotrophs. In: Lidstrom M. and Tabita R. (eds.), Microbial Growth on C1 Compounds.Kluwer Academic Publishers, New York, pp. 277–284.Google Scholar
  6. Green P.N. 1992. The genus Methylobacterium. In: Balows A. (ed.), The Prokaryotes: A Handbook on the Biology of Bacteria. Springer-Verlag, Berlin, pp. 2342–2349.Google Scholar
  7. Holland M.A. 1997. Methylobacterium and plants. Recent Res. Dev. Plant Physiol. 1: 207–213.Google Scholar
  8. Holland M., Davis R., Moffitt S., Olaughlin K., Peach D., Sussan S., Wimbrow L. and Tayman B. 2000. Using ''Leaf Prints'' to investigate a common bacterium. Am. Biol. Teach.62: 128–131.Google Scholar
  9. Holland M.A. and Polacco J.C. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98: 942–948.Google Scholar
  10. Salmeron V., Martinez-Toledo M.V. and Gonzalez-Lopez J. 1990. Nitrogen fixation and production of auxins gibberellins and cytokinins by an Azotobacter chroococcum strain isolated from the root of Zea mays in the presence of insoluble phosphate. Chemosphere 20: 417–422.CrossRefGoogle Scholar
  11. Sarwar M. and Kremer R.J. 1995. Determination of bacterially derived auxins using a microplate method. Lett. Appl. Microbiol. 20: 282–285.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Z.S. Omer
    • 1
  • R. Tombolini
    • 1
  • A. Broberg
    • 2
  • B. Gerhardson
    • 1
  1. 1.Plant Pathology and Biocontrol UnitUppsalaSweden
  2. 2.Department of ChemistrySLUUppsalaSweden

Personalised recommendations