Genetic Resources and Crop Evolution

, Volume 51, Issue 5, pp 559–567

Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers

  • Sentayehu Alamerew
  • Sabina Chebotar
  • Xiuqiang Huang
  • Marion Röder
  • Andreas Börner
Article
  • 183 Downloads

Abstract

The genetic diversity of a subset of the Ethiopian genebank collection maintained at the IPK Gatersleben was investigated applying 22 wheat microsatellites (WMS). The material consisted of 135 accessions belonging to the species T. aestivum L. (69 accessions), T. aethiopicum Jacubz. (54 accessions) and T. durum Desf. (12 accessions), obtained from different collection missions. In total 286 alleles were detected, ranging from 4 to 26 per WMS. For the three species T. aestivum, T. aethiopicum and T. durum on average 9.9, 7.9 and 7.9 alleles per locus, respectively, were observed. The average PIC values per locus were highly comparable for the three species analysed. Considering the genomes it was shown that the largest numbers of alleles per locus occurred in the B genome (18.4 alleles per locus) compared to A (10.1 alleles per locus) and D (8.2 alleles per locus) genomes. Genetic dissimilarity values between accessions were used to produce a dendrogram. All accessions could be distinguished, clustering in two large groups. Whereas T. aestivum formed a separate cluster, no clear discrimination between the two tetraploid species T. durum and T. aethiopicum was observed.

Ethiopian wheat germplasm Genetic diversity Microsatellite markers Triticum aestivum Triticum aethiopicum Triticum durum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson 6J.A., Churchill G.A., Antrique J.E., Tanksley S.D. and Sorrels M.E. 1993. Optimising parental selection for genetic linkage maps. Genome 36: 181–188.Google Scholar
  2. Bechere E., Belay G., Mitiku D. and Meker A. 1996. Phenotypic diversity of tetraploid wheat landraces from northern and north-central regions of Ethiopia. Hereditas 124: 165–172.Google Scholar
  3. Belay G., Tesemma T., Becker H.C. and Merker A. 1993.Variation and interrelationships of agronomic traits in Ethiopian tetraploid wheat landraces. Euphytica 71: 181–188.Google Scholar
  4. Bekele E. 1984. Analysis of regional pattern of phenotypic diversi-ty in the Ethiopian tetraploid and hexaploid wheats. Hereditas 100: 131–154.Google Scholar
  5. Ben Amer I.M., Börner A. and Roder M.S. 2001. Detection of genetic diversity in Libyan wheat genotypes using wheat mi-crosatellite markers. Genetic Resources and Crop Evolution 48: 579–585.Google Scholar
  6. Börner A., Chebotar S. and Korzun V. 2000. Molecular characteri-zation of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor. Appl. Genet. 100: 494–497.Google Scholar
  7. Chebotar S.V. and Sivolap Y.M. 2001. Differentiation, identification and characterization of Triticum aestivum L. varieties from Ukrainian breeding programs by using STMS analysis (in Rus-sian). Cytology and Genetics 35: 18–27.Google Scholar
  8. Chebotar S., Röder M.S., Korzun V., Saal B., Weber W.E. and Börner A. 2003. Molecular studies on genetic integrity of open pollinating species rye (Secale cereale L.) after long term genebank maintenance. Theor. Appl. Genet. (in press).Google Scholar
  9. Devos K.M., Bryan G.J., Collins A.J., Stephenson P. and Gale M.D. 1995. Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor. Appl. Genet. 90: 247–252.Google Scholar
  10. Fahima T., Röder M.S., Grama A. and Nevo E. 1998. Microsatellite DNA polymorphism divergence in Triticum dicoccoides acces-sions highly resistant to yellow rust. Theor. Appl. Genet. 96: 187–195.Google Scholar
  11. FAO 1998. The state of the world's plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, 510 pp.Google Scholar
  12. Huang X.Q., Börner A., Röder M.S. and Ganal M.W. 2002. Asses-sing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 105: 699–707.PubMedGoogle Scholar
  13. Korzun V.N., Röder M.S., Ganal M.W., Hammer K. and Filatenko A.A. 1997. Genetic diversity and evolution of the diploid wheat T. urartu, T. boeoticum and T. monococcum revealed by microsatellite markers. Schrift. zu Genet. Ress. 8: 244–247.Google Scholar
  14. Korzun V., Röder M.S., Ganal M.W., Worland A.J. and Law C.N. 1998. Genetic analysis of the dwarfing gene (Rht 8) in wheat. Part I. Molecular mapping of Rht 8 on the short arm of chromo-some 2D of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 96: 1104–1109.Google Scholar
  15. Pestsova E., Ganal M.W. and Röder M.S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43: 689–697.PubMedGoogle Scholar
  16. Plaschke J., Ganal M.W. and Röder M.S. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 91: 1001–1007.Google Scholar
  17. Proceddu E., Perrino P. and Olita G. 1973. Preliminary information on an Ethiopian wheat germplasm collection mission Proc. Symposium on Genetics and Breeding of Durum Wheat, 14–18 May 1973, Bari, Italy., pp. 181–200.Google Scholar
  18. Röder M.S., Plaschke J., König S.U., Börner A., Sorrells M.E., Tanksley S.D. et al. 1995. Abundance, variability and chromo-somal location of microsatellites in wheat. Mol. Gen. Genet. 246: 327–333.PubMedGoogle Scholar
  19. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.-H., Leroy P. et al. 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.PubMedGoogle Scholar
  20. Roder M.S., Wendehake K., Korzun V., Bredemeijer G. and Isaac et al. P. 2002. Construction and analysis of a microsatellite-based database for European wheat cultivars. Theor. Appl. Genet. (in press).Google Scholar
  21. Rohlf F.J., 1998. NTSYS-pc: Numerical taxonomy and multivariate analysis system. vers. 2.0, Applied Biostatistics Inc., New York.Google Scholar
  22. Tesfaye T., Getachew B. and Worede M. 1991. Morphological diversity in tetraploid wheat landrace populations from the central highlands of Ethiopia. Hereditas 114: 171–176.Google Scholar
  23. Vavilov N.I. 1931. The wheats of Abbyssinia. Suppl. 51to the Bull. Appl. Bot. Gen. and Plant Breeding. 236 p. (in Russian).Google Scholar
  24. Worland A.J., Korzun V., Ganal M.W., Röder M.S. and Law C.N. 1998. Genetic analysis of the dwarfing gene (Rht 8) in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht 8 locus of wheat as revealed by microsatellite screening. Theor. Appl. Genet. 96: 1110–1120.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Sentayehu Alamerew
    • 1
  • Sabina Chebotar
    • 1
  • Xiuqiang Huang
    • 1
  • Marion Röder
    • 1
  • Andreas Börner
    • 1
  1. 1.Institut für Pflanzengenetik und KulturpflanzenforschungGaterslebenGermany

Personalised recommendations