Glycoconjugate Journal

, Volume 21, Issue 6, pp 305–313

Susceptibility of cerebellar granule neurons from GM2/GD2 synthase-null mice to apoptosis induced by glutamate excitotoxicity and elevated KCl: Rescue by GM1 and LIGA20



Our previous study showed an impaired regulation of Ca2+ homeostasis in cultured cerebellar granule neurons (CGN) from neonatal mice lacking GM2, GD2 and all gangliotetraose gangliosides, due to disruption of the GM2/GD2 synthase (GalNAc-T) gene. In the presence of depolarizing concentration (55 mM) K+, these cells showed persistent elevation of intracellular Ca2+ ([Ca2+]i) leading to apoptosis and cell destruction. This was in contrast to CGN from normal littermates whose survival was enhanced by high K+. In this study we demonstrate that glutamate has the same effect as K+ on CGN from these ganglioside-deficient knockout (KO) mice and that apoptosis in both cases is averted by exogenous GM1. Even more effective rescue was obtained with LIGA20, a semi-synthetic derivative of GM1. LC50 of glutamate in the KO cells was 3.1 μM, compared to 46 μM in normal CGN. [Ca2+]i measurement with fura-2 revealed no difference in glutamate-stimulated Ca2+ influx between the 2 cell types. However, reduction of [Ca2+]i following application of Mg2+ was significantly impaired in the mutant CGN. The rescuing effects of exogenous GM1 and LIGA20 corresponded to their ability to restore Ca2+ homeostasis. The greater potency of LIGA20 is attributed to its greater membrane permeability with resultant ability to insert into both plasma and nuclear membranes at low concentration (≤1μM); GM1 at the same concentration was incorporated only into the plasma membrane and required much higher concentration to influence Ca2+ homeostasis and CGN viability. Published in 2004.

GM1 ganglioside ganglioside glutamate excitotoxicity apoptosis Ca2+ homeostasis cerebellar granule neurons nuclear envelop nuclear calcium Na+/Ca2+ exchanger 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ledeen RW. In Neurobiology of Glycoconjugates, edited by Margolis RU, Margolis RK (New York: Plenum Press, 1989), pp. 43-83.Google Scholar
  2. 2.
    Hakomori S-I, Biochem Soc Trans 21, 1952-5 (1993).Google Scholar
  3. 3.
    Wu G, Lu Z-H, Ledeen RW, J Neurosci 15, 3739-46 (1995).PubMedGoogle Scholar
  4. 4.
    Kozireski-Chubak DF, Wu G, Ledeen RW, J Neurosci Res 55, 107-18 (1999).CrossRefGoogle Scholar
  5. 5.
    Kozireski-Chubak DF, Wu G, Ledeen RW, Devl Brain Res 115, 201-8 (1999).CrossRefGoogle Scholar
  6. 6.
    Kozireski-Chubak DF, Wu G, Ledeen RW, J Neurosci Res 57, 550 (1999).Google Scholar
  7. 7.
    Saito M, Sugiyama K, Arch Biochem Biophys 398, 153-9 (2002).PubMedCrossRefGoogle Scholar
  8. 8.
    Xie X, Wu G, Lu Z-H, Rohowsky-Kochan C, Ledeen RW, Neu-rochem Res(2004) (in press).Google Scholar
  9. 9.
    Wu G, Lu Z-H, Xie X, Ledeen RW, Devl Brain Res 126, 183-90 (2001).CrossRefGoogle Scholar
  10. 10.
    Wu G, Lu Z-H, Ledeen RW, J Neurochem 64, 1419-22 (1995).Google Scholar
  11. 11.
    Xie X, Wu G, Lu Z-H, Ledeen RW, J Neurochem 81, 1185-95 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    Wu G, Ledeen RW, Prog Brain Res 101, 101-12 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    Ledeen RW, Wu G, Neurochem Res 27, 637-47 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    Favaron M, Manev H, Alho H, Bertolino M, Ferret B, Guidotti A, Costa E, Proc Natl Acad Sci USA 85, 7351-5 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    De Erausquin GA, Manev H, Guidotti A, Costa E, Brooker G, Proc Natl Acad Sci USA 87, 8017-21 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    Manev H, Favaron M, Vicini S, Guidotti A, Costa E, J Pharmacol Exp Ther 252, 419-27 (1990).PubMedGoogle Scholar
  17. 17.
    Manev H, Guidotti A, Costa E, Adv Lipid Res 25, 269-85 (1993).PubMedGoogle Scholar
  18. 18.
    Nakamura K, Wu G, Ledeen RW, J Neurosci Res 31, 245-53, (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    Wu G, Xie X, Lu ZH, Ledeen RW, Proc Natl Acad Sci USA 98, 307-12 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    Liu Y, Wada R, Kawai H, Sango K, Deng C, Tai T, McDonald MP, Araujo K, Crawley JN, Bierfreund U, Sandhoff K, Suzuki K, Proia RL, J Clin Invest 103, 497-505 (1999)PubMedCrossRefGoogle Scholar
  21. 21.
    Wu G, Lu Z-H, Nakamura K, Spray DC, Ledeen RW (1996) J Neurosci Res 44, 243-54 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    Blasko I, Wagner M, Whitaker N, Grubeck-Loebenstein B, JansenDurr P, FEBS Lett 470, 221-5 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    Wei H, Leeds PR, Qian Y, Wei W, Chen R, Chuang D, Eur J Pharmacol 392, 117-23 (2000).PubMedCrossRefGoogle Scholar
  24. 24.
    Parks TN, Artman LD, Alasti N, Nemeth EF, Brain Res 552, 13-22 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    Liu Y, Hill RH, Arhem P, von Euler G, Life Sci 68, 1817-26 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, Fukumoto S, Haraguchi M, Takeda N, Fujimura K, Sakae M, Kishikawa M, Shiku H, Furukawa Ko, Aizawa S, Proc Natl Acad Sci USA 93, 10662-7 (1996).PubMedCrossRefGoogle Scholar
  27. 27.
    Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, Griffin JW, Schnaar RL, Proc Natl Acad Sci USA 96, 7532-7 (1999).PubMedCrossRefGoogle Scholar
  28. 28.
    Chiavegatto S, Sun J, Nelson RJ, Schnaar RL, Exp Neurol 166, 227-34 (2000).PubMedCrossRefGoogle Scholar
  29. 29.
    Choi DW, Neuron 1, 623-34 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P, Neuron 15, 961-73 (1995).PubMedCrossRefGoogle Scholar
  31. 31.
    Sattler R, Tymianski M, J Mol Med 78, 3-13 (2000).PubMedCrossRefGoogle Scholar
  32. 32.
    Vanhoutte P, Bading H, Curr Opin Neurobiol 13, 366-71 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    Tanaka S, Sako K, Tanaka T, Yonemasu Y, Brain Res 478, 385-90 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    Choi DW, Rothman SM, Annu Rev Neurosci 13, 171-82 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    Marks N, Berg MJ, Guidotti A, Saito MJ Neurosci Res 52, 334-41 (1998).CrossRefGoogle Scholar
  36. 36.
    Saito M, Guidotti A, Berg MJ, Marks N, Ann NY Acad Sci 845, 253-62 (1998).PubMedCrossRefGoogle Scholar
  37. 37.
    Yu RK, Bieberich E, Xia T, Zeng G, J Lipid Res 45, 783-93 (2004).PubMedCrossRefGoogle Scholar
  38. 38.
    Wu G, Lu Z-H, Xie X, Li L, Ledeen RWJ Neurochem 76, 690-702 (2001).CrossRefGoogle Scholar
  39. 39.
    Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH, Cell 80, 439-44 (1995).PubMedCrossRefGoogle Scholar
  40. 40.
    Lanini L, Bachs O, Carafoli E, J Biol Chem 267, 11548-52 (1992).PubMedGoogle Scholar
  41. 41.
    Bootman MD, Thomas D, Tovey SC, Berridge MJ, Lipp P, Cell Mol Life Sci 57, 371-8 (2000).PubMedCrossRefGoogle Scholar
  42. 42.
    Perillo MA, Polo A, Guidotti A, Costa E, Maggio B, Chem Phys Lipids 65, 225-38 (1993).PubMedCrossRefGoogle Scholar
  43. 43.
    Kharlamov A, Zivkovic I, Polo A, Armstrong DM, Costa E, Guidotti A, Proc Natl Acad Sci USA 91, 6303-7 (1994).PubMedCrossRefGoogle Scholar
  44. 44.
    Polo A, Kirschner G, Guidotti A, Costa E, Mol Chem Neuropathol 21, 41-53 (1994).PubMedCrossRefGoogle Scholar
  45. 45.
    Lipartiti M, Lazzaro A, Manev H, NeuroReport 3, 919-21 (1992).PubMedGoogle Scholar
  46. 46.
    Seren MS, Lazzaro A, Yang CL, Canella R, Bassan M, Zanoni R, Manev H, J Pharmacol Exp Ther 268, 460-5 (1994).PubMedGoogle Scholar
  47. 47.
    Ledeen R, Wang J, Lu Z, Wang E, Meyenhofer MF, Wu G, J Neurochem 90(Suppl. 1),90(2004).Google Scholar
  48. 48.
    Xie X, Wu G, Ledeen RW, J Neurosci Res 76, 363-75 (2004).PubMedCrossRefGoogle Scholar
  49. 49.
    Ledeen RW, Wu G, J Lipid Res 45, 1-8 (2004).PubMedCrossRefGoogle Scholar
  50. 50.
    Orrenius S, Zhivotovsky B, Nicotera P, Nature Reviews: Molec Cell Biol 4, 552-65 (2003).CrossRefGoogle Scholar
  51. 51.
    Al-Mohanna FA, Caddy KWT, Bolsover SR, Nature 367, 745-50 (1994).PubMedCrossRefGoogle Scholar
  52. 52.
    Badminton MN, Kendall JM, Rembold CM, Campbell AK, Cell Calcium 23, 79-86 (1998).PubMedCrossRefGoogle Scholar
  53. 53.
    Hardingham GE, Chawla S, Johnson CM, Bading H, Nature 385, 260-5 (1997).PubMedCrossRefGoogle Scholar
  54. 54.
    Vaccarino F, Guidotti A, Costa E, Proc Natl Acad Sci USA 84, 8707-11 (1987).PubMedCrossRefGoogle Scholar
  55. 55.
    Lin LF, Kao LS, Westhead EW, J Neurochem 63, 1941-7 (1994).PubMedCrossRefGoogle Scholar
  56. 56.
    Tokumura A, Okuno M, Fukuzawa K, Houchi H, Tsuchiya K, Oka M, Biochim Biophys Acta 1389, 67-75 (1998).PubMedGoogle Scholar
  57. 57.
    De Moel MP, Van Emst-De Vries SE, Willems PH, De Pont JJ, Int J Biochem Cell Biol 30, 185-95 (1998).PubMedCrossRefGoogle Scholar
  58. 58.
    Ryu BR, Choi DW, Hartley DM, Costa E, Jou I, Gwag BJ, J Phar-mac Experim Therap 290, 811-6 (1999).Google Scholar
  59. 59.
    Rabin SJ, Bachis A, Mocchetti I, J Biol Chem 277, 49466-72 (2002).PubMedCrossRefGoogle Scholar
  60. 60.
    Higashi H, Yamagata T, J Biol Chem 267, 9839-43 (1992).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Gusheng Wu
    • 1
  • Zi-Hua Lu
    • 1
  • Xin Xie
    • 1
  • Robert W. Ledeen
    • 1
  1. 1.Department of Neurology and NeurosciencesNew Jersey Medical School-UMDNJNewarkUSA

Personalised recommendations