Glycoconjugate Journal

, Volume 21, Issue 3–4, pp 125–137 | Cite as

Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization

  • Senitiroh Hakomori


Cell adhesion mediated by carbohydrate-to-carbohydrate interaction (CCI), or cell adhesion with concurrent signal transduction, are discussed in three contexts.

1. Types of cell adhesion based on interaction of several combinations of glycosphingolipids (GSLs) at the surface of interfacing cells (“trans interactio”) are reviewed critically, to exclude the possible involvement of GSL-binding proteins. Special emphasis is on: (i) autoaggregation of mouse teratocarcinoma F9 cells mediated by Le x -to-Le x interaction, in which presence of Le x -binding protein is ruled out; (ii) adhesion of GM3-expressing cells to Gg3-expressing cells, in which involvement of GM3- or Gg3-binding protein is ruled out.

2. Characteristic features and requirements of CCI, as compared with carbohydrate-to-protein interaction (CPI) and protein-to-protein interaction (PPI), are summarized, including: (i) specificity and requirement of bivalent cation; (ii) reaction velocity of CCI as compared to PPI; (iii) negative (repulsive) interaction; (iv) synergistic or cooperative effect of CCI and PPI, particularly GM3-to-Gg3 or GM3-to-LacCer interaction in synergy with integrin-dependent adhesion, or Le x -to-Le x interaction in cooperation with E-cadherin-dependent adhesion.

3. Microdomains at the cell surface are formed based on clustering of GSLs or glycoproteins organized with signal transducers. Among such microdomains, those involved in adhesion coupled with signal transduction to alter cellular phenotype are termed “glycosynaps”. In some glycosynapses, growth factor receptors or integrin receptors are also involved, and their function is modulated by GSLs only when the receptor is N-glycosylated. This modulation may occur in part via interaction of GSLs with N-linked glycans of the receptor, termed “cis interactio”. Published in 2004.

glycosphingolipid Lex GM3 Gb4 Gg3 trans interaction cis interaction glycosynapse binding protein cell adhesion autoaggregation bivalent cation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnott S, Fulmer A, Scott WE, Dea ICM, Moorhouse R, Rees DA, The agarose double helix and its function in agarose gel structure, J Mol Biol 90, 269-84 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    Bryce TA, McKinnon AA, Morris ER, Rees DA, Thom D,Chain conformations in the solgel transitions for polysaccharide systems, and their characterisation by spectroscopic methods, Faraday Disc Chem Soc 57, 221-9 (1974).CrossRefGoogle Scholar
  3. 3.
    Turley EA, Roth S, Interactions between the carbohydrate chains of hyaluronate and chondroitin sulphate, Nature 283, 268-71 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius HJ, Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture, J Biol Chem 273, 11205-11 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    Perillo NL, Marcus ME, Baum LG, Galectins: Versatile modulators of cell adhesion, cell proliferation, and cell death, J Mol Med 76(6), 402-12 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    Kopitz J, von Reitzenstein C, Andre S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius H-J, Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3, J Biol Chem 276(38), 35917-23 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    Amano M, Galvan M, He J, Baum LG, The ST6Gal I sialyltrans-ferase selectively modifies N-glycans on CD45 to negatively regu-late galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death, J Biol Chem 278(9), 7469-75 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    Leffler H, Glycoconjugate Journal, Vol. 19, No. 7/8/9, "Special issue on galectins", 2004.Google Scholar
  9. 9.
    Varki A, Selectin ligands, Proc Natl Acad Sci USA 91, 7390-97 (1994).PubMedCrossRefGoogle Scholar
  10. 10.
    McEver RP, Cummings RD, Cell adhesion in vascular biology: Role of PSGL-1 binding to selectins in leukocyte recruitment, J Clin Invest 100(3), 485-91 (1997).PubMedGoogle Scholar
  11. 11.
    Kannagi R, Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer, Glycoconj J 14, 577-84 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    Crocker PR, Floyd H, Ferguson DJP, Nitschke L, Sialic acid-dependent cell-cell interactions mediated by siglecs: Roles of sialoadhesin and CD22 in macrophage adhesion and B cell homing to the bone marrow, In, Sialobiology and Other Novel Forms of Glycosylation, edited by Inoue Y, Lee YC, Troy FA. Osaka (Gakushin Publ. Co., Japan, 1999), pp. 111-20.Google Scholar
  13. 13.
    Crocker PR, Varki A, Siglecs in the immune system, Immunology 103(2), 137-45 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    Hakomori S, The glycosynapse, Proc Natl Acad Sci USA 99(1), 225-32 (2002).CrossRefGoogle Scholar
  15. 15.
    Hakomori S, Handa K, Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: Essential basis to define tumor malignancy, FEBS Lett 531(1), 88-92 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw 6AS, Allen PM, Dustin ML, The immunological synapse, Annu Rev Immunol 19, 375-96 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    Krummel MF, Davis MM, Dynamics of the immunological synapse: Finding, establishing and solidifying a connection, Curr Opin Immunol 14, 66-74 (2002).PubMedCrossRefGoogle Scholar
  18. 18.
    Bucior I, Scheuring S, Engel A, Burger MM, Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition,J Cell Biol 165(4), 529-37 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    Humphreys T, Chemical dissolution and in vitro reconstruction of sponge cell adhesions: I. Isolation and functional demonstration of the components involved, Dev Biol 8, 27-47 (1963).CrossRefGoogle Scholar
  20. 20.
    Henkart P, Humphreys S, Humphreys T, Characterization of sponge aggregation factor: A unique proteoglycan complex, Biochemistry 12(16), 3045-50 (1973)PubMedCrossRefGoogle Scholar
  21. 21.
    Jumblatt JE, Schlup V, Burger MM, Cell-cell recognition: Specific binding of Microciona sponge aggregation factor to homotypic cells and the role of calcium ions, Biochemistry 19(5), 1038-42 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    Misevic GN, Burger MM, The species-specific cell-binding site of the aggregation factor from the sponge Microciona proliferais a highly repetitive novel glycan containing glucuronic acid, fucose, and mannose, J Biol Chem 265(33), 20577-84 (1990).PubMedGoogle Scholar
  23. 23.
    Misevic GN, Burger MM,Carbohydrate-carbohydrate interactions of a novel acidic glycan can mediate sponge cell adhesion, J Biol Chem 268, 4922-29 (1993).PubMedGoogle Scholar
  24. 24.
    Fernandez-Busquets X, Kammerer RA, Burger MM, A 35-kDa protein is the basic unit of the core from the 2 ×10 4-kDa aggregation factor responsible for species-specific cell adhesion in the marine sponge Microciona prolifera, J Biol Chem 271(38), 23558-65 (1996).PubMedCrossRefGoogle Scholar
  25. 25.
    Spillmann D, Hard K, Thomas-Oates J, Vliegenthart JFG, Misevic G, Burger MM, Finne J, Characterization of a novel pyruvylated carbohydrate unit implicated in the cell aggregation of the ma-rine sponge Microciona prolifera, J Biol Chem 268(18), 13378-87 (1993).PubMedGoogle Scholar
  26. 26.
    Spillmann D, Thomas-Oates JE, van Kuik JA, Vliegenthart JFG, Misevic G, Burger MM, Finne J, Characterization of a novel sulfated carbohydrate unit implicated in the carbohydrate-carbohydrate-mediated cell aggregation of the marine sponge Microciona prolifera, J Biol Chem 270(10), 5089-97 (1995).PubMedCrossRefGoogle Scholar
  27. 27.
    Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JFG, Carbohydrate self-recognition mediates marine sponge cellular adhe-sion, Proc Natl Acad Sci USA 98(16), 9419-24 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    Solter D, Knowles BB, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc Natl Acad Sci USA 75, 5565-69 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    Hakomori S, Nudelman ED, Levery SB, Solter D, Knowles BB, The hapten structure of a developmentally regulated glycolipid antigen (SSEA-1) isolated from human erythrocytes and adeno-carcinoma: A preliminary note, Biochem Biophys Res Commun 100, 1578-86 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    Kannagi R, Nudelman ED, Levery SB, Hakomori S, A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen, SSEA-1, J Biol Chem 257, 14865-74 (1982).PubMedGoogle Scholar
  31. 31.
    Gooi HC, Feizi T, Kapadia A, Knowles BB, Solter D, Evans MJ, Stage-specific embryonic antigen involves a1-3 fucosylated type 2 blood group chains, Nature 292, 156-8 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    Fenderson BA, Zehavi U, Hakomori S, A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective, J Exp Med 160, 1591-6 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    Rosenman SJ, Fenderson BA, Hakomori S, The role of glycocon-jugates in embryogenesis, In Glycoconjugates in Medicine, edited by Ohyama M, Muramatsu T (Professional Postgraduate Services, Japan, 1988, pp. 43-50).Google Scholar
  34. 34.
    Eggens I, Fenderson BA, Toyokuni T, Dean B, Stroud MR, H ako-mori S, Specific interaction between Le x and Le x determinants: A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells, J Biol Chem 264, 9476-84 (1989).PubMedGoogle Scholar
  35. 35.
    Kojima N, Fenderson BA, Stroud MR, Goldberg RI, Habermann R, Toyokuni T, Hakomori S, Further studies on cell adhesion based on Le x-Le x interaction, with new approaches: Embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Le x expression,Glycoconj J 11,238-48 (1994).PubMedCrossRefGoogle Scholar
  36. 36.
    Muramatsu T, Gachelin G, Damonneville 6M, Delarbre C, Jacob F, Cell surface carbohydrates of embryonal carcinoma cells: Polysaccharidic side chains of F9 antigens and of receptors to two lectins, FBP and PNA, Cell 18, 183-91 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    Muramatsu T, Muramatsu H, Gachelin G, Jacob F, High molecular weight carbohydrates on embryonal carcinoma cells, In Teratocar-cinoma and embryonic cell interactions, edited by Muramatsu T, Gachelin G, Moscona AA, Ikawa Y, Japan Scientific Societies Press Tokyo, p. 143-56 Rojo J, de la Fuente JM, Barrientos AG, Garcia R, Penades S, Adhesion forces between Lewis x determinant antigens as measured by atomic force microscopy, Angew Chem Intl Ed 40(16),3052-5 (2001).Google Scholar
  38. 39.
    Hernaiz MJ, de la Fuente JM, Barrientos AG, Penades S, A model system mimicking glycosphingolipid clusters to quantify carbohydrate self-interactions by surface plasmon resonance, Angew Chem Intl Ed 41(9), 1554-7 (2002).CrossRefGoogle Scholar
  39. 40.
    Yvelin F, Zhang Y, Mallet J, Robert F, Jeannin Y, Sinay P, Crystal structure of the Lewis x trisaccharide, Carbohydr Lett 1, 475-82 (1996).Google Scholar
  40. 41.
    Takeichi M, Cadherin cell adhesion receptors as a morphogenetic regulator, Science 251, 1451-5 (1991).PubMedGoogle Scholar
  41. 42.
    Larue L, Ohsugi M, Hirchenhain J, Kemler R, E-cadherin null mutant embryos fail to form a trophectoderm epithelium, Proc Natl Acad Sci USA 91, 8263-7 (1994).PubMedCrossRefGoogle Scholar
  42. 43.
    Draber P, Maly P, Mutants of embryonal carcinoma cells defective in the expression of embryoglycan, Proc Natl Acad Sci USA 84, 5798-802 (1987).PubMedCrossRefGoogle Scholar
  43. 44.
    Boubelik M, Floryk D, Bohata J, Dráberová L, Macák J, Smíd F, Draber P, Le x glycosphingolipids-mediated cell aggregation, Glycobiology 8, 139-46 (1998).PubMedCrossRefGoogle Scholar
  44. 45.
    Siuzdak G, Ichikawa Y, Caulfield TJ, Munoz B, Wong C-H, Nicolaou KC, Evidence of Ca 2 +dependent carbohydrate association through ion spray mass spectrometry, J AmChem Soc 115, 2877-81 (1993).CrossRefGoogle Scholar
  45. 46.
    Gahmberg CG, Hakomori S, Altered growth behavior of malignant cells associated with changes in externally labeled glycoprotein and glycolipids, Proc Natl Acad Sci USA 70, 3329-33 (1973).PubMedCrossRefGoogle Scholar
  46. 47.
    Hynes RO, Alteration of cell surface proteins by viral transforma-tion and proteolysis, Proc Natl Acad Sci USA 70, 3170-4 (1973).PubMedCrossRefGoogle Scholar
  47. 48.
    Ruoslahti E, Vaheri A, Kuusela P, Linder E, Fibroblast surface antigen: A new serum protein, Biochim Biophys Acta 322, 352-8 (1973).PubMedGoogle Scholar
  48. 49.
    Kleinman HK, Martin GR, Fishman PH, Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen, Proc Natl Acad Sci USA 76, 3367-71 (1979).PubMedCrossRefGoogle Scholar
  49. 50.
    Ruoslahti E, Integrins, J Clin Invest 87, 1-5 (1991).PubMedCrossRefGoogle Scholar
  50. 51.
    Hynes RO, Integrins: Versatility, modulation, and signaling in cell adhesion, Cell 69, 11-25 (1992).PubMedCrossRefGoogle Scholar
  51. 52.
    Cheresh DA, Pytela R, Pierschbacher MD, Klier FG, Ruoslahti E, Reisfeld RA, An Arg-Gly-Asp-directed receptor on the surface of human melanoma cells exists in a divalent cation-dependent functional complex with the disialoganglioside GD2, J Cell Biol 105, 1163-73 (1987).PubMedCrossRefGoogle Scholar
  52. 53.
    Zheng M, Fang H, Tsuruoka T, Tsuji T, Sasaki T, Hakomori S, Regulatory role of GM3 ganglioside in a5b1 integrin receptor for fibronectin-mediated adhesion of FUA169 cells, J Biol Chem 268, 2217-22 (1993).PubMedGoogle Scholar
  53. 54.
    Kojima N, Hakomori S, Specific interaction between gangliotriao-sylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells, J Biol Chem 264, 20159-62 (1989).PubMedGoogle Scholar
  54. 55.
    Kojima N, Hakomori S, Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction, J Biol Chem 266, 17552-58 (1991).PubMedGoogle Scholar
  55. 56.
    Matsuura K, Kitakouji H, Sawada N, Ishida H, Kiso M, Kitajima K, Kobayashi K, A quantitative estimation of carbohydrate-carbohydrate interaction using clustered oligosac-charides of glycolipid monolayers and of artificial glycoconjugate polymers by surface plasmon resonance, J AmChem Soc 122(30), 7406-7 (2000).CrossRefGoogle Scholar
  56. 57.
    Laine RA, Yogeeswaran G, Hakomori S, Glycosphingolipids co-valently linked to agarose gel or glass beads, J Biol Chem 249, 4460-6 (1974).PubMedGoogle Scholar
  57. 58.
    Carter WG, Fukuda M, Lingwood C, Hakomori S, Chemical composition, gross structure, and organization of transformation-sensitive glycoproteins, Ann NY Acad Sci 312, 160-77 (1978).PubMedGoogle Scholar
  58. 59.
    Andrews PW, Goodfellow PN, Shevinsky LH, Bronson DL, Knowles BB, Cell surface antigens of a clonal human embryonal carcinoma cell line: Morphological and antigenic differentiation in culture, Int J Cancer 29, 523-31 (1982).PubMedGoogle Scholar
  59. 60.
    Andrews PW, Damjanov I, Simon D, Banting G, Carlin C, Dracopoli NC, Fogh J, Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line TERA-2: Differentiation in vivoand in vitro, Lab Invest 50, 147-62 (1984).PubMedGoogle Scholar
  60. 61.
    Andrews PW, Fenderson BA, Hakomori S, Human embryonal car-cinoma cells and their differentiation in culture, Int J Androl 10, 95-104 (1987).PubMedGoogle Scholar
  61. 62.
    Kannagi R, Levery SB, Ishigami F, Hakomori S, Shevinsky LH, Knowles BB, Solter D, New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3, J Biol Chem 258, 8934-42 (1983).PubMedGoogle Scholar
  62. 63.
    Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, Knowles BB, Solter D, Stage-specific embryonic antigens (SSEA-3 and-4) are epitopes of a unique globo-series ganglioside iso-lated from human teratocarcinoma cells, EMBO J 2, 2355-61 (1983).PubMedGoogle Scholar
  63. 64.
    Yu S, Withers DA, Hakomori S, Globoside-dependent adhesion of human embryonal carcinoma cells, based on carbohydrate-carbohydrate interaction, initiates signal transduction and induces enhanced activity of transcription factors AP1 and CREB, J Biol Chem 273, 2517-25 (1998).CrossRefGoogle Scholar
  64. 65.
    Zhu Z, Kojima N, Stroud MR, Hakomori S, Fenderson BA, Monoclonal antibody directed to Le y oligosaccharide inhibits implantation in the mouse, Biol Repro 52,903-12 (1995).CrossRefGoogle Scholar
  65. 66.
    Israelachvili JN, Adams GE, Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm, J Chem Soc Faraday Trans 74, 975-1001 (1978).CrossRefGoogle Scholar
  66. 67.
    Helm CA, Knoll W, Israelachvili JN, Measurement of ligand-receptor interactions, Proc Natl Acad Sci USA 88, 8169-73 (1991).PubMedCrossRefGoogle Scholar
  67. 68.
    Dammer U, Popescu O, Wagner P, Anselmetti D, Guntherodt H-J, Misevic GN, Binding strength between cell adhesion proteoglycans measured by atomic force microscopy, Science 267, 1173-75 (1995).PubMedGoogle Scholar
  68. 69.
    Matsuura K, Kitakouji H, Tsuchida A, Sawada N, Ishida H, Kiso M, Kobayashi K, Carbohydrate-carbohydrate interaction between glycolipids and glycoconjugate polystyrenes at the air-water interface, Chem Letters 1998, 1293-4 (1998).CrossRefGoogle Scholar
  69. 70.
    Santacroce PV, Basu A, Probing specificity in carbohydrate-carbohydrate interactions with micelles and Langmuir monolayers, Angew Chem Intl Ed 42(1), 95-8 (2003).CrossRefGoogle Scholar
  70. 71.
    Wang X, Sun P, Al-Qamari A, Tai T, Kawashima I, Paller AS, Carbohydrate-carbohydrate binding of ganglioside to integrin a5 modulates a5b1 function, J Biol Chem 276(11), 8436-44 (2001).PubMedCrossRefGoogle Scholar
  71. 72.
    Kawakami Y, Kawakami K, Steelant WFA, Ono M, Baek RC, Handa K, Withers DA, Hakomori S, Tetraspanin CD9 is a "pro-teolipid", and its interaction with a3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility, J Biol Chem 277(37), 34349-58 (2002).PubMedCrossRefGoogle Scholar
  72. 73.
    Wang X-Q, Sun P, O'Gorman M, Tai T, Paller AS, Epidermal growth factor receptor glycosylation is required for ganglioside GM3 binding and GM3-mediated suppression of activation, Gly-cobiology 11(7), 515-22 (2001).Google Scholar
  73. 74.
    Fernandes H, Cohen S, Bishayee S, Glycosylation-induced confor-mational modification positively regulates receptor-receptor asso-ciation: A study with an aberrant epidermal growth factor receptor (EGFRvIII/DEGFR) expressed in cancer cells, J Biol Chem 276(7), 5375-83 (2001).PubMedCrossRefGoogle Scholar
  74. 75.
    Tsuda T, Ikeda Y, Taniguchi N, The Asn-420-linked sugar chain in human epidermal growth factor receptor suppresses ligand-independent spontaneous oligomerization, J Biol Chem 275, 21982434-40 (1986).Google Scholar
  75. 77.
    Geyer A, Gege C, Schmidt RR, Carbohydrate-carbohydrate recog-nition between Lewis x glycoconjugates, Angew Chem Intl Ed 38(10), 1466-8 (1999).CrossRefGoogle Scholar
  76. 78.
    Wormald MR, Edge CJ, Dwek RA, The solution conformation of the Le x group, Biochem Biophys Res Commun 180, 1214-21 (1991).PubMedCrossRefGoogle Scholar
  77. 79.
    Kojima N, Shiota M, Sadahira Y, Handa K, Hakomori S, Cell adhesion in a dynamic flow system as compared to static system: Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin-or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells, J Biol Chem 267, 17264-70 (1992).PubMedGoogle Scholar
  78. 80.
    Menikh A, Nyholm P-G, Boggs JM, Characterization of the inter-action of Ca 2 +with hydroxy and non-hydroxy fatty acid species of cerebroside sulfate by Fourier transform infrared spectroscopy and molecular modeling, Biochemistry 36, 3438-47 (1997).PubMedCrossRefGoogle Scholar
  79. 81.
    Yu S, Kojima N, Hakomori S, Kudo S, Inoue S, Inoue Y, Binding of rainbow trout sperm to egg is mediated by strong carbohydrate-to-carbohydrate interaction between (KDN)GM3 (deaminated neu-raminyl ganglioside) and Gg3-like epitope, Proc Natl Acad Sci USA 99(5), 2854-59 (2002).PubMedCrossRefGoogle Scholar
  80. 82.
    Boubelik M, Dráberová L, Draber P, Carbohydrate-mediated sort-ing in aggregating embryonal carcinoma cells, Biochem Biophys Res Commun 224, 283-88 (1996).PubMedCrossRefGoogle Scholar
  81. 83.
    Kojima N, Hakomori S, Synergistic effect of two cell recog-nition systems: Glycosphingolipid-glycosphingolipid interaction.Carbohydrate-to-carbohydrate interaction, through glycosynapse137 and integrin receptor interaction with pericellular matrix protein, Glycobiology 1, 623-30 (1991).PubMedGoogle Scholar
  82. 84.
    Edelman GM, Crossin KL, Cell adhesion molecules: Implica-tions for a molecular histology, Annu Rev Biochem 60, 155-90 (1991).PubMedCrossRefGoogle Scholar
  83. 85.
    Crocker PR, Clark EA, Filbin M, Gordon S, Jones Y, Varki A, Siglecs: Afamily of sialic acid-binding lectins, Glycobiology 8(2), v-vi (1998).PubMedGoogle Scholar
  84. 86.
    Toledo MS, Suzuki E, Handa K, Hakomori S, Cell growth regula-tion through GM3-enriched microdomain in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13,J Biol Chem (in press) (2004).Google Scholar
  85. 87.
    Handa K, Jacobs F, Longenecker BM, Hakomori S, Associ-ation of MUC-1 and PSGL-1 with low-density microdomain in T-lymphocytes: A preliminary note, Biochem Biophys Res Commun 285, 788-94(2001).PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Senitiroh Hakomori

There are no affiliations available

Personalised recommendations