Glycoconjugate Journal

, Volume 21, Issue 1–2, pp 59–62 | Cite as

Biological roles of sulfoglycolipids and pathophysiology of their deficiency

  • Koichi Honke
  • Yanglong Zhang
  • Xinyao Cheng
  • Norihiro Kotani
  • Naoyuki Taniguchi
Article

Abstract

Mammalian sulfoglycolipids are comprised of two major members, sulfatide (SO3-3Gal-ceramide) and seminolipid (SO3-3Gal-alkylacylglycerol). Sulfatide is abundant in the myelin sheath and seminolipid is expressed on the spermatogenic cells. Cerebroside sulfotransferase (CST)-deficient mice generated by gene targeting completely lack sulfatide and seminolipid all over the body. CST-null mice manifest some neurological disorders due to myelin dysfunction, an aberrant enhancement of oligodendrocyte terminal differentiation, and an arrest of spermatogenesis, indicating that sulfation of glycolipids is essential for myelin formation and spermatogenesis. Moreover, CST-deficiency ameliorates L-selectin-dependent monocyte infiltration in the kidney after ureteral obstruction, an experimental model of renal interstitial inflammation, indicating that sulfatide is an endogenous ligand of L-selectin. Studies on the molecular mechanisms by which sulfoglycolipids participate in these biological processes are ongoing. Published in 2004.

sulfotransferase sulfatide seminolipid myelin spermatogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ishizuka I, Chemistry and functional distribution of sulfoglycol-ipids, Prog Lipid Res 36, 245–319 (1997).PubMedCrossRefGoogle Scholar
  2. 2.
    Vos JP, Lopes-Cardozo M, Gadella BM, Metabolic and functional aspects of sulfogalactolipids, Biochim Biophys Acta 1211, 125–49 (1994).PubMedGoogle Scholar
  3. 3.
    Schulte S, Stoffel W, Ceramide UDP-galactosyltransferase from myelinating rat brain: Purification, cloning, and expression, Proc Natl Acad Sci USA 90, 10265–9 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    Honke K, Yamane M, Ishii A, Kobayashi T, Makita A, Purification and characterization of 3-phosphoadenosine-5-phosphosulfate: GalCer sulfotransferase from human renal cancer cells, J Biochem 119, 421–7 (1996).PubMedGoogle Scholar
  5. 5.
    Honke K, Tsuda M, Hirahara Y, Ishii A, Makita A, Wada Y, Molecular cloning and expression of cDNA encoding human 3-phosphoadenylylsulfate: Galactosylceramide 3-sulfotransferase, J Biol Chem 272, 4864–8 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    Bosio A, Binczek E, Stoffel W, Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis, Proc Natl Acad Sci USA 93, 13280–5 (1996).PubMedCrossRefGoogle Scholar
  7. 7.
    Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Suzuki K, Popko B, Myelination in the absence of galactocerebroside and sulfatide: Normal structure with abnormal function and regional instability, Cell 86, 209–19 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, Fukushima K, Fukushima J, Nagasawa T, Yoshida N, Wada Y, Taniguchi N, Paranodal junction formation and spermatogenesis re-quire sulfoglycolipids, Proc Natl Acad Sci USA 99, 4227–32 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    Hirahara Y, Tsuda M, Wada Y, Honke K, cDNA cloning, genomic cloning, and tissue-specific regulation of mouse cerebroside sulfotransferase, Eur J Biochem 267, 1909–17 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    Girault JA, Peles E, Development of nodes of Ranvier, Curr Opin Neurobiol 12, 476–85 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    Dupree JL, Coetzee T, Blight A, Suzuki K, Popko B, Myelin galac-tolipids are essential for proper node of Ranvier formation in the CNS, J Neurosci 18, 1642–9 (1998).PubMedGoogle Scholar
  12. 12.
    Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, Peles E, Popko B, Suzuki K, Nishino H, Baba H, A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myeli-nated axon but not essential for initial cluster formation, J Neurosci 22, 6507–14 (2002).PubMedGoogle Scholar
  13. 13.
    Dupree JL, Girault JA, Popko B, Axo-glial interactions regulate the localization of axonal paranodal proteins, J Cell Biol 147, 1145–52 (1999).PubMedCrossRefGoogle Scholar
  14. 14.
    Bansal R, Winkler S, Bheddah S, Negative regulation of oligo-dendrocyte differentiation by galactosphingolipids, J Neurosci 19, 7913–24 (1999).PubMedGoogle Scholar
  15. 15.
    Hirahara Y, Bansal R, Honke K, Ikenaka K, Wada Y, Sulfatide is a negative regulator of oligodendrocyte differentiation: Develop-ment in sulfatide-mull mice, Glia 45, 269–77 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    Brinster RL, Germline stem cell transplantation and transgenesis, Science 296, 2174–6 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    Fujimoto H, Tadano-Aritomi K, Tokumasu A, Ito K, Hikita T, Suzuki K, Ishizuka I, Requirement of seminolipid in spermatoge-nesis revealed by UDP-galactose: Ceramide galactosyltransferase-deficient mice, J Biol Chem 275, 22623–6 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    Shikata K, Suzuki Y, Wada J, Hirata K, Matsuda M, Kawashima H, Suzuki T, Iizuka M, Makino H, Miyasaka M, L-selectin and its ligands mediate infiltration of mononuclear cells into kidney interstitium after ureteric obstruction, J Pathol 188, 93–9 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    Suzuki Y, Toda Y, Tamatani T, Watanabe T, Suzuki T, Nakao T, Murase K, Kiso M, Hasegawa A, Tadano-Aritomi K, Ishizuka I, Miyasaka M, Sulfated glycolipids are ligands for a lymphocyte homing receptor, L-selectin (LECAM-1), Binding epitope in sulfated sugar chain, Biochem Biophys Res Commun 190, 426–34 (1993).PubMedCrossRefGoogle Scholar
  20. 20.
    Ogawa D, Shikata K, Honke K, Sato S, Matsuda M, Nagase R, Tone A, Okada S, Usui H, Wada J, Miyasaka M, Kawashima H, Suzuki Y, Suzuki T, Taniguchi N, Hirahara Y, Tadano-Aritomi K, Ishizuka I, Tedder TF, Makino H, Cerebroside sulfotransferase deficiency ameliorates L-selectin-dependent monocyte infiltration in the kidney after ureteral obstruction, J Biol Chem 279, 2085–90 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Koichi Honke
    • 1
  • Yanglong Zhang
    • 1
  • Xinyao Cheng
    • 2
  • Norihiro Kotani
    • 2
  • Naoyuki Taniguchi
    • 2
  1. 1.Department of Molecular GeneticsKochi University Medical SchoolKochiJapan
  2. 2.Department of BiochemistryOsaka University Medical SchoolOsakaJapan

Personalised recommendations