Glycoconjugate Journal

, Volume 20, Issue 5, pp 301–317 | Cite as

Ganglioside/glycosphingolipid turnover: New concepts

  • G. Tettamanti


In this review focus is given to the metabolic turnover of gangliosides/glycosphingolipids. The metabolism and accompanying intracellular trafficking of gangliosides/glycosphingolipids is illustrated with particular attention to the following events: (a) the de novo biosynthesis in the endoplasmic reticulum and Golgi apparatus, followed by vesicular sorting to the plasma membrane; (b) the enzyme-assisted chemical modifications occurring at the plasma membrane level; (c) the internalization via endocytosis and recycling to the plasma membrane; (d) the direct glycosylations taking place after sorting from endosomes to the Golgi apparatus; (e) the degradation at the late endosomal/lysosomal level with formation of fragments of sugar (glucose, galactose, hexosamine, sialic acid) and lipid (ceramide, sphingosine, fatty acid) nature; (f) the metabolic recycling of these fragments for biosynthetic purposes (salvage pathways); and (g) further degradation of fragments to waste products. Noteworthy, the correct course of ganglioside/glycosphingolipid metabolism requires the presence of the vimentin intracellular filament net work, likely to assist intracellular transport of sphingoid molecules.

Out of the above events those that can be quantitatively evaluated with acceptable reliability are the processes of de novo biosynthesis, metabolic salvage and direct glycosylation. Depending on the cultured cells employed, the percentage of distribution of de novo biosynthesis, salvage pathways, and direct glycosylation, over total metabolism were reported to be: 35% (range: 10–90%) for de novo biosynthesis, 7% (range: 5–10%) for direct glycosylation, and 58% (range: 10–90%) for salvage pathways. The attempts made to calculate the half-life of overall ganglioside turnover provided data of unsure reliability, especially because in many studies salvage pathways were not taken into consideration. The values of half-life range from 2 to 6.5 h to 3 days depending on the cells used. Available evidence for changes of ganglioside/glycosphingolipid turnover, due to extracellular stimuli, is also considered and discussed. Published in 2004.

ganglioside metabolism ganglioside turnover glycosphingolipid salvage pathways glycosphingolipid signalling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singer SJ, Nicolson GL, The fluid mosaic model of the structure of cell membranes, Science 175, 720-31 (1972).PubMedGoogle Scholar
  2. 2.
    Simons K, Ikonen E, Functional rafts in cell membranes, Nature 387, 569-92 (1999).CrossRefGoogle Scholar
  3. 3.
    Berridge MJ, Irvine RF, Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312, 315-21 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    Hakomori SI, Glycosphingolipids in cellular interaction, differentiation and oncogenesis, Ann Rev Biochem 50, 733-64 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    Tettamanti G, Sonnino S, Ghidoni R, Masserini M, Venerando B, Chemical and functional properties of gangliosides. Their possible implication in the membrane-mediated transfer of information. In Physics of Amphiphiles: Micelles, Vesicles and Microemultions, edited by Degiorgio V, Corti M (North Holland Publs, Amsterdam, 1985), pp. 607-47.Google Scholar
  6. 6.
    Ledeen RW, Biosynthesis, metabolism and biological effect of gangliosides. In Neurobiology of glycoconjugates edited by Margolis RU, Margolis RK (Plenum Press Corp., 1989), pp. 43- 83.Google Scholar
  7. 7.
    Nagai Y, Tsuji S, Cell biological significance of gangliosides in neuronal differentiation and development. In New Trends in Ganglioside Research, Neurochemical and Neuroregenerative Aspects, edited by Ledeen RW, Hogan EL, Tettamanti G, Yates AJ, Yu RK (Fidia Res. Series, Springler Verlag, 1988, vol. 14, pp. 329-50).Google Scholar
  8. 8.
    Hannun YA, Loomis CR, Merrill AHJ, Bell RM, Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets, J Biol Chem 261, 12604-9 (1986).PubMedGoogle Scholar
  9. 9.
    Kolesnick RN, 1,2-diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis inGH3pituitary cells, J Biol Chem 262, 16759-62 (1987).PubMedGoogle Scholar
  10. 10.
    Okazaki T, Bell RM, Hannun YA, Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation, J Biol Chem 264, 19076-80 (1989).PubMedGoogle Scholar
  11. 11.
    Hannun YA, The sphingomyelin cycle and the second messenger function of ceramide, J Biol Chem 269, 3125-28 (1994).PubMedGoogle Scholar
  12. 12.
    Kolesnick RN, Ceramide: A novel second messenger, Trends in Cell Biol 2, 232-6 (1992).CrossRefGoogle Scholar
  13. 13.
    Hedlund M, Duan RD, Nilsson A, Svanborg C, Sphingomyelin, Glycosphingolipids and ceramide signalling in cells exposed to P-fimbriated Escherichia coli, Mol Microbiol 29, 1297-1306 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S, Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation, J Cell Biol 114, 155-67 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    Schwarz A, Rapaport E, Hirschberg K, Futerman AH, A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching, J Biol Chem 270, 10990-8 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    Kakugana Y, Wada T, Yamaguchi K, Yamanami H, Ouchi K, Sato I, Miyagi T, Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression, Proc Natl Acad Sci USA 99, 10718-23 (2002).CrossRefGoogle Scholar
  17. 17.
    Steinmann RM, Mellman IS, Muller WA, Cohn ZA, Endocytosis and the recycling of plasma membrane, J Cell Biol 16, 1-27 (1983).CrossRefGoogle Scholar
  18. 18.
    Wiegandt H, Glycosphingolipids. In Advances in Lipid Research edited by Paoletti R, Kritchevsky D (Academic Press, New York, 1971), pp. 249-89.Google Scholar
  19. 19.
    Hakomori SI, Chemistry of Glycosphingolipids. In Sphingolipid Biochemistry edited by Kanfer JN, Hakomori SI (Plenum Press, New York, 1983), pp. 1-165.Google Scholar
  20. 20.
    Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K, Physiology and pathophysiology of sphingolipid metabolism and signaling, Biochim Biophy Acta 1485, 63-9 (2000).Google Scholar
  21. 21.
    Shayman JA, Sphingolipids, Kidney Intern 58, 11-26 (2000).CrossRefGoogle Scholar
  22. 22.
    Tadano-Aritomi T, Kubo H, Ireland P, Hikata T, Ishizuka I, Isolation and characterization of a unique sulfated ganglioside, sulfated GM1a, from rat kidney, Glycobiology 8, 341-50 (1998).PubMedCrossRefGoogle Scholar
  23. 23.
    Anderson RG, The caveolae membrane system, Annu Rev Biochem 67, 199-225 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    Brown DA, London E, Functions of lipid rafts in biological membranes, Annu Rev Cell Dev Biol 14, 111-36 (1998).PubMedCrossRefGoogle Scholar
  25. 25.
    Hakomori SI, Handa K, Jwabuchi K, Yamamura S, Prinetti A, New insights in glycosphingolipid function: "Glycosignaling domain", a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling, Glycobiology 8, XI-XIX (1998).PubMedGoogle Scholar
  26. 26.
    Kolesnick R, Gonni FM, Alonso A, Compartmentalization of ceramide signaling: Physical foundations and biological effects, J Cell Physiol 184, 285-300 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    Hakomori SI, Glycosphingolipids in cellular interaction, differentiation and ontogenesis, Annu Rev Biochem 50, 733-64 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    Tettamanti G, Toward the understanding of the functional role of gangliosides. In New Trends in ganglioside research: Neurochemical and neuroregenerative aspects edited by Ledeen RW, Hogan EL, Tettamanti G, Yates AJ, Yu RK (Fidia Research Series, Springer Verlag, Berlin, 1988), vol. 14, pp. 625-46.Google Scholar
  29. 29.
    Ledeen RW, Wu G, Ganglioside function in the neuron, Trends Glycosci Glycotechnol 4, 174-87 (1992).Google Scholar
  30. 30.
    Hannun YA, Luberto C, Argraves KM, Enzymes of sphingolipid metabolism: From modular to integrative signaling, Biochemistry 40, 4893-4903 (2001).PubMedCrossRefGoogle Scholar
  31. 31.
    Merrill Jr. AH, De novo sphingolipid biosynthesis: A necessary but dangerous pathway, J Biol Chem 277, 25843-6 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    Merrill Jr. AH, Sullards MC, Wang E, Voss KA, Riley RT, Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisis, Envir Health Perspec 109, 283-9 (2001).Google Scholar
  33. 33.
    Basu S, Basu M, Dastgheib S, Hawes JW, Biosynthesis and regulation of glycosphingolipids. In Comprehensive Natural Products Chemistry edited by Barton D, Nakanishi K, Meth-Cohen O, vol. 3 (edited by Pinto BM) (Pergamon Press, New York, 1999), pp. 107-28.Google Scholar
  34. 34.
    Basu S, Das K, Basu M, Glycosyltransferases in glycosphingolipid biosynthesis. In Oligosaccharides in chemistry and biology—A comprehensive handbook edited by Ernst B, Sinay P, Hart G (Wiley-VCH Verlag GmbH, Germany, 2000), pp. 329- 47.Google Scholar
  35. 35.
    Kolter T, Proia RL, Sandhoff K, Combinational ganglioside biosynthesis J Biol Chem 277, 25859-62 (2002).PubMedCrossRefGoogle Scholar
  36. 36.
    Ternes P, Franke S, Zahringer U, Sperling P, Heinz E, Identification and characterization of a sphingolipid Δ 4-desaturase family, 277, 25512-18 (2002).Google Scholar
  37. 37.
    Gatt S, Enzymatic hydrolysis of sphingolipids. I. Hydrolysis and synthesis of ceramides by an enzyme from rat brain, J Biol Chem 241, 3724-30 (1966).PubMedGoogle Scholar
  38. 38.
    Basu S, Kaufman B, Roseman S, Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain, J Biol Chem 248, 1388-94 (1973).PubMedGoogle Scholar
  39. 39.
    Ichikawa S, Sakiyama H, Suzuki G, Hidari KI, Hirabayashi Y, Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis, Proc Natl Acad Sci 93, 4638-43 (1996).PubMedCrossRefGoogle Scholar
  40. 40.
    Paul P, Kamisaka Y, Marks DL, Pagano RE, Purification and characterization of UDP-glucose: Ceramide glucosyltransferase from rat liver Golgi membranes, J Biol Chem 271, 2287-93 (1996).PubMedCrossRefGoogle Scholar
  41. 41.
    Basu S, Schultz A, Basu M, Roseman S, Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain, J Biol Chem 243, 4272-9 (1971).Google Scholar
  42. 42.
    Morell P, Radin P, Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid, Biochemistry 8, 506-12 (1969).PubMedCrossRefGoogle Scholar
  43. 43.
    Schulte S, Stoffel W, Ceramide UDPgalactosyltransferase from myelinating rat brain: Purification coding and expression, Proc Natl Acad Sci USA 90, 10265-9 (1993).PubMedCrossRefGoogle Scholar
  44. 44.
    Sunderam KS, Lev M, Purification and activation of brain sulfotransferase, J Biol Chem 267, 24041-4 (1992).Google Scholar
  45. 45.
    Basu S, Kaufman B, Roseman S, Enzymatic synthesis of ceramide glucose and ceramide lactose by glycosyltransferase from embryonic chicken brain, J Biol Chem 243, 5802-4 (1968).PubMedGoogle Scholar
  46. 46.
    Nomurova T, Takizawa M, Aoki J, Arai H, Inoue K, Wakisaka E, Yoshizuka N, Imokawa G, Dohmae N, Takio K, Hattori M, Matsuo N, Purification, cDNA cloning, and expression of UDPGal: Glucosylceramide, ?-1,4-galactosyltransferase from rat brain, J Biol Chem 273, 13570-7 (1998).CrossRefGoogle Scholar
  47. 47.
    Keenan TW, Morre JD, Basu S, Ganglioside biosynthesis: Concentration of glycosphingolipid glycosyltransferase in Golgi apparatus from rat liver, J Biol Chem 249, 310 (1974).PubMedGoogle Scholar
  48. 48.
    Maccioni HJF, Daniotti JL, Martina JA, Organisation of ganglioside synthesis in the Golgi apparatus, Biochim Biophys Acta 1437, 101-18 (1999).PubMedGoogle Scholar
  49. 49.
    Giraudo CG, Rosales Fritz VM, Maccioni HJ, GA2/GM2/GD2 synthase localizes to the trans-golgi network of CHO-K1 cells, Biochem J 342, 633-40 (1999).PubMedCrossRefGoogle Scholar
  50. 50.
    Daniotti JL, Martina JA, Giraudo CG, Zurita AR, Maccioni HJ, GM3 alpha 2,8-sialyltransferase (GD3 synthase): Protein characterization and sub-Golgi location in CHO-K1 cells, J Neurochem 74, 1711-20 (2000).PubMedCrossRefGoogle Scholar
  51. 51.
    Martina JA, Daniotti JL, Maccioni HJ, Influence of Nglycosylation and N-glycan trimming on the activity and intracellular traffic of GD3 synthase, J Biol Chem 273, 3725-31 (1998).PubMedCrossRefGoogle Scholar
  52. 52.
    Giraudo CG, Daniotti JL, Maccioni HJ, Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus, Proc Natl Acad Sci USA 98, 1625-30 (2001).PubMedCrossRefGoogle Scholar
  53. 53.
    Maccioni HJF, Giraudo CG, Daniotti JL, Understanding the stepwise synthesis of glycolipids, Neurochemical Research 27, 629- 36 (2002).PubMedCrossRefGoogle Scholar
  54. 54.
    Roseman S, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, Chem Phys Lipids 5, 270-97 (1970).PubMedCrossRefGoogle Scholar
  55. 55.
    Basu S, Basu M, Chien JL, Prosper KA, Biosynthesis of gangliosides in tissues. In Structure and Function of Gangliosides edited by Svennerholm L, Dreyfus H, Urban PE (Plenum Publ. Press, New York, 1980), pp. 213-226.Google Scholar
  56. 56.
    Basu S, Basu M, Das KK, Daussin F, Schaeper RJ, Banerjee P, Khan P, Suzuki FA, Solubilized glycosyltransferases and biosynthesis in vitro of glycolipids, Biochimie 70, 1551-63 (1988).PubMedCrossRefGoogle Scholar
  57. 57.
    Kolodny EH, Kanfer J, Quirk JM, Brady RO, Properties of a particle-bound enzyme from rat intestine that cleaves sialic acid from Tay-Sachs ganglioside, J Biol Chem 246, 1426-31 (1971).PubMedGoogle Scholar
  58. 58.
    Riboni L, Caminiti A, Bassi R, Tettamanti G, The degradative pathway of gangliosides GM1 and GM2 in Neuro2a cells by sialidase, J Neurochem 64, 451-4 (1995).PubMedCrossRefGoogle Scholar
  59. 59.
    Sango K, Yamanaka S, Hoffman A, Okuda Y, Grinberg A, Westphal H, MacDonald MP, Grawley JN, Sandhoff K, Suzuki K, Proia RL, Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism, Nat Genetics 11, 170-6 (1995).CrossRefGoogle Scholar
  60. 60.
    Miyagi T, Tsuiki S, Evidence for sialidase hydrolyzing ganglioside GM2 and GM1 in rat plasma membrane, FEBS Letters 206, 223-8 (1986).PubMedCrossRefGoogle Scholar
  61. 61.
    Ito M, Yamagata T, Anovel glycosphingolipid-degrading enzyme cleaves the linkage between the oligosaccharide and ceramide of neutral and acidic glycosphingolipids, J Biol Chem 261, 14278- 82 (1986).PubMedGoogle Scholar
  62. 62.
    Zhou B, Li SC, Laine RA, Huang RTC, Li YT, Isolation and characterization of ceramide glycanase from the leech, Macrobdella decora, J Biol Chem 264, 12272-7 (1989).PubMedGoogle Scholar
  63. 63.
    Ito M, Ikegami Y, Yamagata T, Activator proteins for glycosphingolipid hydrolysis by endoglycoceramidases. Elucidation of biological functions of cell-surface glycosphingolipids in situ by endoglycoceramidases made possible using these activator proteins, J Biol Chem 266, 7919-26 (1991).PubMedGoogle Scholar
  64. 64.
    Basu M, Girzadas M, Dastgheib S, Baker J, Rossi F, Radin NS, Basu S, Ceramide glycanase from rat mammary tissues: Inhibition by PPMP(D-/L.) and its probable role in signal transduction, Indian J Biochem Biophys 34, 142-9 (1997).PubMedGoogle Scholar
  65. 65.
    Basu M, Kelly P, Girzadas M, Li Z, Basu S, Properties of animal ceramide glycanases, Methods in Enzymology 311, 287-97 (2000).PubMedCrossRefGoogle Scholar
  66. 66.
    Dastgheib S, Basu SS, Li Z, Basu M, Basu S, Analysis of glycosphingolipids using clam (cercenaria mercenaria) ceramide glycanase. In Methods in Enzymology edited by Merrill Jr. AH, Hannun YA, vol. 312 Part B, (Academic Press, NY 2000), pp. 196-205.Google Scholar
  67. 67.
    Hirabayashi Y, Kimura M, Matsumoto M, Yamamoto K, Kadowaki S, Tochikura T, A novel glycosphingolipid hydrolyzing enzyme, glycosphingolipid ceramide deacylase, which cleaves the linkage between the fatty acid and sphingosine base in glycosphingolipids, J Biochem 103, 1-4 (1988).PubMedGoogle Scholar
  68. 68.
    Furusato M, Sueyoshi N, Mitsutake S, Sakaguchi K, Kita K, Okino N, Ichinose S, Omori A, Ito M, Molecular cloning and characterization of sphingolipid ceramide N-deacylase from a marine bacterium, Shewanella alga G8, J Biol Chem 277, 17300- 7 (2002).PubMedCrossRefGoogle Scholar
  69. 69.
    Rodriguez-Lafrasse C, Vanier MT, Sphingosylphosphorylcholine in Niemann-Pick disease brain: Accumulation in type A but not in type B, Neurochem Res 24, 199-205 (1999).PubMedCrossRefGoogle Scholar
  70. 70.
    Goi G, Bairati C, Massaccesi L, Lovagnini A, Lombardo A, Tettamanti G, Membrane anchoring and surface distribution of glycohydrolases of human erythrocyte membranes, FEBS Letters 473, 89-94 (2000).PubMedCrossRefGoogle Scholar
  71. 71.
    Tulsiani DR, Chayko CA, Orgebin-Crist MC, Araki Y, Temporal surge of glycosyltransferase activities in the genital tract of the hamster during the estrous cycle, Biol Reproduct 54, 1032-7 (1996).CrossRefGoogle Scholar
  72. 72.
    Schengrund CL, Rosenberg A, Intracellular location and properties of bovine brain sialidase, J Biol Chem 245, 6196-200 (1970).PubMedGoogle Scholar
  73. 73.
    Tettamanti G, Morgan IG, Gombos G, Vincendon G, Mandel P, Sub-synaptosomal location of brain particulate neuraminidase, Brain Res 47, 515-8 (1972).PubMedCrossRefGoogle Scholar
  74. 74.
    Bosmann HB, Red cell hydrolases. 3. Neuraminidase activity in isolated human erythrocyte plasma membranes, Vox Sang 26, 497-512 (1974).PubMedCrossRefGoogle Scholar
  75. 75.
    Yohe HC, Jacobson RI, Yu RK, Ganglioside basic protein interaction: Protection of gangliosides against neuraminidase action, J Neurosci Res 9, 401-12 (1983).PubMedCrossRefGoogle Scholar
  76. 76.
    Saito M, Yu RK, Role of myelin-associated neuraminidase in the ganglioside metabolism of rat brain myelin, J Neurochem 58, 83-7 (1992).PubMedGoogle Scholar
  77. 77.
    Chiarini A, Fiorilli A, Siniscalco C, Tettamanti G, Venerando B, Solubilization of the membrane-bound sialidase from pig brain by treatment with bacterial phosphatidylinositol phospholipase C, J Neurochem 55, 1576-84 (1990).PubMedGoogle Scholar
  78. 78.
    Chiarini A, Fiorilli A, De Francesco L, Venerando B, Tettamanti G, Human erythrocyyte sialidase is linked to the plasma membrane by a glycosylphosphatidylinositol anchor and party located on the outer surface, Glycoconjugate J 10, 64-71 (1993).CrossRefGoogle Scholar
  79. 79.
    Schengrund C-L, Nelson JT, Sialidase activity in mouse neuroblastoma cell lines, Neurochem Res 1, 181-90 (1976).CrossRefGoogle Scholar
  80. 80.
    Kopitz J, von Reitzenstein C, Sinz K, Cantz M, Selective ganglioside desialylation in the plasma membrane of human neuroblastoma cells, Glycobiology 6, 367-76 (1996).PubMedGoogle Scholar
  81. 81.
    Monti E, Papini N, Croci GL, Tringali C, Anastasia L, Miyagi T, Preti A, Tettamanti G, Prinetti A, Sonnino S, Venerando B, In vivo activity of Mm Neu3, a plasma membrane associated sialidase, Abstract, 6th International Symposium on biochemical roles of eukariotic cell surface macromolecules, Kolkata (India), January 16-8 (2003).Google Scholar
  82. 82.
    Usuki S, Lyu SC, Sweeley CC, Sialidase activities of cultured human fibroblasts and the metabolism of GM3 ganglioside, J Biol Chem 263, 6847-53 (1988).PubMedGoogle Scholar
  83. 83.
    Preti A, Fiorilli A, Lombardo A, Caimi L, Tettamanti G, Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex. J Neurochem 35, 281-96 (1980).PubMedGoogle Scholar
  84. 84.
    Durrie R, Saito M, Rosenberg A, Endogenous glycosphingolipid acceptor specificity of sialosyltransferase systems in intact Golgi membranes, synaptosomes, and synaptic plasma membranes from rat brain, Biochemistry 27, 3759-64 (1988).PubMedCrossRefGoogle Scholar
  85. 85.
    Bassi R, Riboni L, Tettamanti G, Cultured cerebellar granule cells, but not astrocytes, produce an ester of ganglioside GD1b, presumably GD1b monolactone, from exogenous GD1b, Biochem J 302, 937-42 (1994).PubMedGoogle Scholar
  86. 86.
    Hoekstra D, Kok JW, Trafficking of glycosphingolipids in eukaryotic cells-sorting and recycling of lipids, Biochim Biophys Acta 1113, 277-94 (1992).PubMedGoogle Scholar
  87. 87.
    Pagano RE, Lipid traffic in eukaryotic cell: Mechanism for intracellular transport and organelle-specific enrichment of lipids, Curr Opin Cell Biol 2, 652-63 (1990).PubMedCrossRefGoogle Scholar
  88. 88.
    Schwarzmann G, Marsch D, Herzog V, Sandhoff K, In vitro incorporation and metabolism of gangliosides. In Gangliosides and Modulation of Neuronal Functioning NATO ASI Series, edited by Rahmann HZ, (Series H Cell Biology, Springer Verlag, Berlin, 1987), pp. 217-29.Google Scholar
  89. 89.
    van Meer G, Lipid traffic un animal cells, Annu Rev Cell Biol 5, 247-75 (1989).PubMedCrossRefGoogle Scholar
  90. 90.
    Sonnino S, Chigorno V, Acquotti D, Pitto M, Kirschner G, Tettamanti G, A photoreactive derivative of radiolabeled GM1 ganglioside: Preparation and use to establish the involvement of specific proteins in GM1 uptake by human fibroblasts in culture, Biochemistry, 28, 77-84 (1989).PubMedCrossRefGoogle Scholar
  91. 91.
    Sonnino S, Chigorno V, Valsecchi M, Pitto M, Tettamanti G, Specific ganglioside-cell protein interactions: A study performed with GM1 derivative containing photo-activable azide and rat cerebellar granule cells in culture, Neurochem Int 20, 315-21 (1992).PubMedCrossRefGoogle Scholar
  92. 92.
    Klausner RD, Donaldson JG, Lippincott-Schwartz J, Brefeldin A: Insights into the control of membrane traffic and organelle structure, J Cell Biol 116, 1071-80 (1992).PubMedCrossRefGoogle Scholar
  93. 93.
    Gordon CM, Lloyd RO, Endocytosis and recycling of gangliosides in a human melanoma cell line: Inhibitory effect of Brefeldin A and monensin, Arch Biochem Biophys 315, 339-44 (1994).PubMedCrossRefGoogle Scholar
  94. 94.
    Riboni L, Bassi R, Tettamanti G, Effect of Brefeldin A on ganglioside metabolism in cultured neurons: Implications for the intracellular traffic of gangliosides. J Biochem 116, 140-6 (1994).PubMedGoogle Scholar
  95. 95.
    Mayor S, Presley JF, Maxfield FR, Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process, J Cell Biol 121, 1257-69 (1993).PubMedCrossRefGoogle Scholar
  96. 96.
    Hao M, Maxfield FR, Characterization of rapid membrane internalization and recycling, J Biol Chem 275, 15279-86 (2000).PubMedCrossRefGoogle Scholar
  97. 97.
    Riboni L, Viani P, Tettamanti G, Estimating sphingolipid metabolism and trafficking in cultured cells using radiolabeled compounds. In Methods in Enzymology edited by Merril Jr. AH, Hannun YA, (Academic Press, San Diego, 1999) vol. 311, pp. 656-682.Google Scholar
  98. 98.
    Mancini GMS, Hoogeveen AT, Galpard H, Manson JE, Svennerholm L, Ganglioside GM1 metabolism in living human fibroblasts with ?-galactosidase deficiency, Hum Genet 73, 35-8 (1986).PubMedCrossRefGoogle Scholar
  99. 99.
    Sonderfeld S, Conzelmann E, Schwarzmann G, Burg J, Hinrichs U, Sandhoff K, Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2-gangliosidosis subjects, Eur J Biochem 149, 247-55 (1985).PubMedCrossRefGoogle Scholar
  100. 100.
    Riboni L, Bassi R, Caminiti A, Prinetti A, Viani P, Tettamanti G, Metabolic fate of exogenous sphingosine in neuroblastoma Neuro2A cells. Dose-dependence and biological effects. In Sphingolipids as Signalling Modulators in the Nervous System, Ledeen BW, Hakomori SI, Yates AJ, Schneider YS, Yu RK, Ann NY Acad Sci vol. 845, 46-56 (1998).Google Scholar
  101. 101.
    Renlund M, Tietze F, Gahl WA, Defective sialic acid egress from isolated fibroblast lysosomes of patients with Salla disease, Science, 232, 759-62 (1986).PubMedGoogle Scholar
  102. 102.
    Mancini GMS, de Jonge HR, Galjaard H, Verheijen FW, Characterization of proton-driven carrier of sialic acid in the lysosomal membrane. Evidence for a group specific transport system for acidic monosaccharides, J Biol Chem 264, 15247-1525 (1989).PubMedGoogle Scholar
  103. 103.
    Ghidoni R, Sonnino S, Chigorno V, Venerando B, Tettamanti G, Occurrence of glycosylation and deglycosylation of exogenously administered ganglioside GM1 in mouse liver, Biochem J 213, 321-9 (1983).PubMedGoogle Scholar
  104. 104.
    Ghidoni R, Trinchera M, Venerando B, Fiorilli A, Sonnino S, Tettamanti G, Incorporation and metabolism of exogenous GM1 ganglioside in rat liver. Biochem J 237, 147-55 (1986).PubMedGoogle Scholar
  105. 105.
    Ghidoni R, Trinchera M, Sonnino S, Chigorno V, Tettamanti G, The sialic acid residue of exogenousGM1ganglioside is recycled for biosynthesis of sialoglycoconjugates in rat liver, Biochem J 247, 157-64 (1987).PubMedGoogle Scholar
  106. 106.
    Trinchera M, Ghidoni R, Greggia L, Tettamanti G, The Nacetylgalactosamine of exogenous GM2 gangliosides is recycled for glycoconjugate biosynthesis in rat liver, Biochem J 166, 103-6 (1990).Google Scholar
  107. 107.
    Trinchera M, Ghidoni R, Sonnino S, Tettamanti G, Recycling of glucosylceramide and sphingosine for the biosynthesis of gangliosides and sphingomyelin in rat liver. Biochem J 270, 815-20 (1990).PubMedGoogle Scholar
  108. 108.
    Trinchera M, Wiesmann U, Pitto M, Acquotti D, Ghidoni R, Different metabolic recycling of the lipid components of exogenous sulphatide in human fibroblasts, Biochem J 252, 275-379 (1988).Google Scholar
  109. 109.
    Chigorno V, Riva C, Valsecchi M, Nicolini M, Brocca P, Sonnino S, Metabolic processing of gangliosides by human fibroblasts in culture. Formation and recycling of separate pools of sphingosine. Eur J Biochem 250, 661-9 (1997).PubMedCrossRefGoogle Scholar
  110. 110.
    Ghidoni R, Riboni L, Tettamanti G, Metabolism of exogenous gangliosides in cerebellar granule cells differentiated in culture, J Neurochem 53, 1567-74 (1989).PubMedGoogle Scholar
  111. 111.
    Riboni L, Prinetti A, Pitto M, Tettamanti G, Patterns of endogenous gangliosides and metabolic processing of exogenous gangliosides in cerebellar granule cells during differentiation in culture, Neurochem Res 15, 1175-83 (1990).PubMedCrossRefGoogle Scholar
  112. 112.
    Riboni L, Tettamanti G, Rapid internalization and intracellular metabolic processing of exogenous ganglioside by cerebellar granule cells in culture, J Neurochem 57, 1931-1039 (1991).PubMedGoogle Scholar
  113. 113.
    Riboni L, Bassi R, Corti M, Tettamanti G, Metabolism of exogenous ganglioside GM1 in cultured cerebellar granule cells. The fatty acid and sphingosine moieties formed during degradation are re-used for lipid biosynthesis, FEBS Lett 322, 257-60 (1993).PubMedCrossRefGoogle Scholar
  114. 114.
    Riboni L, Bassi R, Prinetti A, Tettamanti G, Salvage of metabolic products in ganglioside metabolism: A study on rat cerebellar granule cells in culture. FEBS Lett 391, 336-40 (1996).PubMedCrossRefGoogle Scholar
  115. 115.
    Fredman P, Mansson JE, Rynmark BM, Josefsen K, Eklond A, Hallner L, Ostebye T, Horn T, Buschard K, The glycosphingolipid sulfatide in the islets of Langherhans in rat pancreas is processed through recycling: Possible involvement in insulin trafficking, Glycobiology 10, 39-50 (2000).PubMedCrossRefGoogle Scholar
  116. 116.
    Sofer A, Schwarzmann G, Futerman AH, The internalization of a short acyl chain analogue of ganglioside GM1 in polarized neurons, J Cell Sci 109, 2111-9 (1996).PubMedGoogle Scholar
  117. 117.
    Kok JW, Eskelinen S, Hoeckstra K, Hoeckstra D, Salvage of glucosylceramide by recycling after internalization along the pathway of receptor-mediated endocytosis, Proc Natl Acad Sci USA 86, 9896-9900 (1989).PubMedCrossRefGoogle Scholar
  118. 118.
    Kok JW, Hoeckstra K, Eskelinen S, Hoeckstra D, Recycling pathways of glucosylceramide in BH cells: Distinct involvement of early and late endosomes, J Cell Sci 103, 1139-52 (1992).PubMedGoogle Scholar
  119. 119.
    Sakakibara K, Momoi T, Uchida T, Nagai Y, Evidence for association of glycosphingolipid with a colchicine-sensitive microtubule-like cytoskeletal structure of cultured cells, Nature 293, 76-9 (1981).PubMedCrossRefGoogle Scholar
  120. 120.
    Gillard BK, Heath JP, Thurmon LT, Marcus DM, Association of glycosphingolipids with intermediate filaments of human umbilical vein endothelial cells, Exp Cell Res 192, 433-44 (1991).PubMedCrossRefGoogle Scholar
  121. 121.
    Gillard BK, Thurmon LT, Harrell RG, Capetanaki Y, Saito M, Yu RK, Marcus DM, Biosynthesis of glycosphingolipids is reduced in the absence of a vimentin intermediate filament network, J Cell Sci 107, 3545-55 (1994).PubMedGoogle Scholar
  122. 122.
    Gillard BK, Harrell RG, Marcus DM, Pathways of glycosphingolipid biosynthesis in SWIB cells in the presence and absence of vimentin intermediate filaments, Glycobiology 6, 33-42 (1996).PubMedGoogle Scholar
  123. 123.
    Gillard BK, Clement RG, Marcus DM, Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways, Glycobiology 8, 885-90 (1998).PubMedCrossRefGoogle Scholar
  124. 124.
    Gillard BK, Clement RG, Colucci-Gruyon E, Babinet C, Schwarzmann G, Taki T, Kasama T, Marcus DM, Decreased synthesis of glycosphingolipids in cells lacking vimentin intermediate filaments, Expt Cell Res 242, 561-72 (1998).CrossRefGoogle Scholar
  125. 125.
    Fishman PH, Bradley RM, Hom BE, Moss J, Uptake and metabolism of exogenous gangliosides by cultured cells: Effect of choleragen on the turnover of GM1, J Lipid Res 24, 1002-11 (1983).PubMedGoogle Scholar
  126. 126.
    Medlock KA, Merrill Jr. AH, Rapid turnover of sphingosine synthesized de novo from [14C]serine by Chinese hamster ovary cells, Biochem Biophys Res Comm 157, 232-7 (1988).PubMedCrossRefGoogle Scholar
  127. 127.
    Rump JA, Phillips J, Decker K, Biosynthesis of gangliosides in primary cultures of rat hepatocytes. Determination of the net synthesis of individual gangliosides by incorporation of labeled N-acetylmannosamine, Biol Chem Hoppe-Seyler 367, 425-32 (1986).PubMedGoogle Scholar
  128. 128.
    Miller-Podraza H, Fishman PH, Translocation of newly synthesized gangliosides to the cell surface, Biochemistry 21, 3265-70 (1982).PubMedCrossRefGoogle Scholar
  129. 129.
    Ravasi D, Ferraretto A, Omodeo-Sal`e MF, Tettamanti G, Pitto M, Masserini M, Ethanol-induced increase of sphingosine recycling for ganglioside biosynthesis: A study performed on cerebellar granule cells in culture, J Neurosci Res 69, 80-5 (2002).PubMedCrossRefGoogle Scholar
  130. 130.
    Svennerholm L, Ganglioside designation. In Structure and Function of Ganglioside edited by Svennerholm L, Mandel P, Dreyfus H, Urban PF, Adv. Exp. Med. Biol. (Plenum Press, New York, 1980), vol. 125, p. 11.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • G. Tettamanti
    • 1
  1. 1.Department of Medical Chemistry, Biochemistry and Biotechnology, and Study Center for the Functional Biochemistry and Biotechnology of Glycolipids, The Medical SchoolUniversity of Milan, LITA-SegrateSegrate (Milan)Italy

Personalised recommendations