Advertisement

Glycoconjugate Journal

, Volume 20, Issue 2, pp 107–118 | Cite as

Alpha-Galactosyl trisaccharide epitope: Modification of the 6-primary positions and recognition by human anti-αGal antibody

  • Peter R. Andreana
  • Przemyslaw Kowal
  • Adam J. Janczuk
  • Peng George WangEmail author
Article

Abstract

Galactose oxidase (EC 1.1.3.9, GAO) was used to convert the C-6′ OH of Galβ(1 → 4)Glcβ–OBn (5) to the corresponding hydrated aldehyde (7). Chemical modification, through dehydratative coupling and reductive amination, gave rise to a small library of Galβ(1 → 4)Glcβ–OBn analogues (9a–f, 10, 11). UDP-[6-3H]Gal studies indicated that α1,3-galactosyltransferase recognized the C-6′ modified Galβ(1 → 4)Glcβ–OBn analogues (9a–f, 10, 11). Preparative scale reactions ensued, utilizing a single enzyme UDP-Gal conversion as well as a dual enzymatic system (GalE and α1,3GalT), taking full advantage of the more economical UDP-Glc, giving rise to compounds 6, 15–22. Galα(1 → 3)Galβ(1 → 4)Glcβ–OBn trisaccharide (6) was produced on a large scale (2 g) and subjected to the same chemoenzymatic modification as stated above to produce C-6″ modified derivatives (23–30). An ELISA bioassay was performed utilizing human anti-αGal antibodies to study the binding affinity of the derivatized epitopes (6, 15–30). Modifications made at the C-6′ position did not alter the IgG antibody's ability to recognize the unnatural epitopes. Modifications made at the C-6″ position resulted in significant or complete abrogation of recognition. The results indicate that the C-6′ OH of the αGal trisaccharide epitope is not mandatory for antibody recognition. Published in 2004.

galactosyltransferase antibody carbohydrates epitope Galactose oxidase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Varki A, Biological roles of oligosaccharides: All of the theories are correct, Glycobiology 3, 97-130 (1993).PubMedGoogle Scholar
  2. 2.
    Sharon N, Lis H, Carbohydrates in cell recognition, Sci Am 268, 82-9 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    Ellington AD, Szostak JW, In vitro selection of RNA molecules that bind specific ligands, Nature 346, 818-22 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    Tuerk C, Gold L, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 249, 505-10 (1990).PubMedGoogle Scholar
  5. 5.
    Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ, A new type of synthetic peptide library for identifying ligand-binding activity, Nature 354, 82-4 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ, Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature 355, 564-6 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    Toshima K, Tatsuta K, Recent progress in O-glycosylation methods and its application to natural products synthesis, Chem Rev 93, 1503-31 (1993).CrossRefGoogle Scholar
  8. 8.
    Barresi F, Hindsgaul O, Chemically synthesized oligosaccharides, 1994.Asearchable table of glycosidic linkages, J CarbohydrChem 14, 1043-87 (1995).Google Scholar
  9. 9.
    Karlsson-Parra A, Ridderstad A, Wallgren AC, Moller E, Ljunggren HG, Korsgren O, Xenograft rejection of porcine isletlike cell clusters in normal and natural killer cell-depleted mice, Transplantation 61, 1313-20 (1996).PubMedCrossRefGoogle Scholar
  10. 10.
    McKane W, Lee J, Preston R, Hacking A, Simpson P, Lynds S, Goldberg L, Cairns T, Taube D, Polymorphism in the human antipig natural antibody repertoire: Implications for antigen-specific immunoadsorption, Transplantation 66, 626-33 (1998).PubMedCrossRefGoogle Scholar
  11. 11.
    Wang L, Radic MZ, Galili U, Human anti-Gal heavy chain genes. Preferential use of VH3 and the presence of somatic mutations, J Immun 155, 1276-85 (1995).PubMedGoogle Scholar
  12. 12.
    Galili U, Andrews P, Suppression of a-galactosyl epitope synthesis and production of the natural anti-Gal antibody: A major evolutionary event in ancestral Old World primates, J Human Evol 29, 433-42 (1993).CrossRefGoogle Scholar
  13. 13.
    McAuliffe JC, Hindsgaul O, Carbohydrate drugs-an ongoing challenge, Chem & Ind 5, 170-4 (1997).Google Scholar
  14. 14.
    Chen X, Zhang W, Wang J, Fang J, Wang PG, Production of alpha-galactosyl epitopes via combined use of two recombinant whole cells harboring UDP-galactose 4-epimerase and alpha-1,3-galactosyltransferase, Biotech Prog 16, 595-99 (2000).CrossRefGoogle Scholar
  15. 15.
    Zhang J, Kowal P, Fang J, Andreana P, Wang PG, Efficient chemoenzymatic synthesis of globotriose and its derivatives with a recombinant ?(1,4)-galactosyltransferase, Carb Res 337, 969-76 (2002).CrossRefGoogle Scholar
  16. 16.
    Zhang W, Wang J-Q, Li J, Yu L-B, Wang PG, Large-Scale Synthesis of an ?Galactosyl Trisaccharide Epitope Involved in the Hyperacute Rejection Upon Xenotransplantation, J Carbohydr Chem 18, 1009-17 (1999).CrossRefGoogle Scholar
  17. 17.
    Fang J, Li J, Chen X, Zhang Y, Wang J, Guo Z, Zhang W, Yu L, Brew K, Wang PG, Highly efficient chemoenzymic synthesis of ?-galactosyl epitopes with a recombinant ?(1?3)-galactosyltransferase, J Am Chem Soc 120, 6635-8 (1998).CrossRefGoogle Scholar
  18. 18.
    Chen X, Kowal P, Hamad S, Fan H, Wang PG, Cloning, expression and characterization of a UDP-galactose 4-epimerase from Escherichia coli, Biotech Lett 21, 1131-5 (1999).CrossRefGoogle Scholar
  19. 19.
    Xu Y, Lorf T, Sablinski T, Gianello P, Bailin M, Monroy R, Kozlowski T, Awwad M, Cooper DKC, Sachs DH, Removal of anti-porcine natural antibodies from human and nonhuman primate plasma in vitro and in vivo by a Gal?(1?3)Gal?(1?4)Gle?-X immunoaffinity column, Transplantation 65, 172-9 (1998).PubMedCrossRefGoogle Scholar
  20. 20.
    Taniguchi S, Neethling FA, Korchagina EY, Bovin N, Ye Y, Kobayashi T, Niekrasz M, Li S, Koren E, In vivo immunoadsorption of antipig antibodies in baboons using a specific Gal? (1?3)Gal column, Transplantation 62, 1379-84 (1996).PubMedCrossRefGoogle Scholar
  21. 21.
    Andreana PR, Xie W, Cheng HN, Qiao L, Murphy DJ, Gu Q-M, Wang PG, In Situ Preparation of ?-D-1-O-Hydroxylamino Carbohydrate Polymers Mediated by Galactose Oxidase, Org Lett 4, 1863-6 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    Andreana PR, Sanders T, Janczuk A, Warrick JI, Wang PG, Chemoenzymatic synthesis of polyhydroxyazepanes, Tetrahedron Lett 43, 6525-8 (2002).CrossRefGoogle Scholar
  23. 23.
    Palcic MM, Hindsgaul O, Glycosyltransferases in the synthesis of oligosaccharide analogs, Trends Glycosci Glycotechnol 8, 37-49 (1996).Google Scholar
  24. 24.
    Elhalabi JM, Rice KG, Synthesis and applications for unnatural sugar nucleotides, Curr Med Chem 6, 93-116 (1999).PubMedGoogle Scholar
  25. 25.
    Ohrlein R, Glycosyltransferase-catalyzed synthesis of non-natural oligosaccharides, Top Curr Chem 200, 227-54 (1999).Google Scholar
  26. 26.
    Blanken WM, Van den E, Dirk H, Biosynthesis of terminal Gal? (1?3)Gal?(1?4)GlcN Ac-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of aUDPGal: N-acetyllactosaminide ?1,3-galactosyltransferase from calf thymus, J Biol Chem 260, 12927-34 (1985).PubMedGoogle Scholar
  27. 27.
    Mazur A, Galactose Oxidase. In: Enzymes in Carbohydrate Synthesis, edited by Bednarski MD (Oxford University Press, New York, 1991), pp. 99-110.Google Scholar
  28. 28.
    Osawa T, Irimura T, Kawaguchi T, Bauhinia purpurea agglutinin, Methods in Enzymology 50, 367-72 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    Furka A, Sebestyen F, Asgedom M, Dibo G, General method for rapid synthesis of multicomponent peptide mixtures, Int J Pept Protein Res 37, 487-93 (1991).PubMedCrossRefGoogle Scholar
  30. 30.
    Ohlmeyer MHJ, Swanson RN, Dillard L, Reader JC, Asouline G, Kobayashi R, Wigler M, Still WC, Complex synthetic chemical libraries indexed with molecular tags, Proc Nat Acad Sci USA 90, 10922-6 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    Itoh S, Taki M, Takayama S, Nagatomo S, Kitagawa T, Sakurada N, Arakawa R, Fukuzumi S, Oxidation of Benzyl Alcohol with CuII and ZnII Complexes of the Phenoxyl Radical as a Model of the Reaction of Galactose Oxidase, Angew Chem Int Ed 38, 2774-6 (1999).CrossRefGoogle Scholar
  32. 32.
    Sujino K, Malet C, Hindsgaul O, Palcic MM, Acceptor hydroxyl group mapping for calf thymus ?1,3galactosyltransferase and enzymatic synthesis of ?-D-Galp(1?3)-?-D-Galp(1?4)? DGlcpNAc analogs, Carb Res 305, 483-9 (1998).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Peter R. Andreana
    • 1
  • Przemyslaw Kowal
    • 1
  • Adam J. Janczuk
    • 1
  • Peng George Wang
    • 1
    Email author
  1. 1.Wayne State UniversityDetroitUSA

Personalised recommendations