Glycoconjugate Journal

, Volume 20, Issue 1, pp 71–78 | Cite as

Glycosylation defining cancer cell motility and invasiveness



Published in 2004.

focal de-differentiation site sialyl-Lex tetraspanin N-glycosylation CD82 apoptosis metastasis CD9/alpha3 integrin/GM3 complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hakomori S, Aberrant glycosylation in tumors and tumorassociated carbohydrate antigens, Adv Cancer Res 52, 257–331 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    Hakomori S, Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism, Cancer Res 56, 5309–18 (1996).PubMedGoogle Scholar
  3. 3.
    Kojima N, Shiota M, Sadahira Y, Handa K, Hakomori S, Cell adhesion in a dynamic flow system as compared to static system: Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin-or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells, J Biol Chem 267, 17264–70 (1992).PubMedGoogle Scholar
  4. 4.
    Hakomori S, Carbohydrate-carbohydrate interaction as an initial step in cell recognition, Pure & Appl Chem 63, 473–82 (1991).Google Scholar
  5. 5.
    Bovin NV, Carbohydrate-carbohydrate interactions:Areview, Biochemistry (Moscow) 61(6), 694–704 (1996).Google Scholar
  6. 6.
    Rojo J, Morales JC, Penades S, Carbohydrate-carbohydrate interactions in biological and model systems, Topics Curr Chem 218, 45–92 (2002).Google Scholar
  7. 7.
    Varki A, Selectin ligands, Proc Natl Acad Sci USA 91, 7390–7 (1994).PubMedCrossRefGoogle Scholar
  8. 8.
    Ito A, Handa K, Withers DA, Satoh M, Hakomori S, Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: Possible role of disialogangliosides in tumor progression, FEBS Lett 498, 116–20 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    Kopitz J, von Reitzenstein C, Andre S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius H-J, Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3, J Biol Chem 276(38), 35917–23 (2001).PubMedCrossRefGoogle Scholar
  10. 10.
    Crocker PR, Varki A, Siglecs in the immune system, Immunology 103(2), 137–45 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    Hoff SD, Matsushita Y, Ota DM, Cleary KR, Yamori T, Hakomori S, Irimura T, Increased expression of sialyl-dimeric Lex antigen in liver metastases of human colorectal carcinoma, Cancer Res 49, 6883–8 (1989).PubMedGoogle Scholar
  12. 12.
    Nakamori S, Kameyama M, Imaoka S, Furukawa H, Ishikawa O, Sasaki Y, Kabuto T, Iwanaga T, Matsushita Y, Irimura T, Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: Clinicopathological and immunohistochemical study, Cancer Res 53, 3632–7 (1993).PubMedGoogle Scholar
  13. 13.
    Kannagi R, Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer, Glycoconj J 14, 577–84 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    Basu S, Das K, Basu M, Glycosyltransferase in glycosphingolipid biosynthesis. In Oligosaccharides in Chemistry and Biology: Comprehensive Handbook, edited by Ernst B, Sinay PHart G (Wiley-VCH, Weinheim, Germany, 2000), pp. 329–47.Google Scholar
  15. 15.
    Ono M, Sakamoto M, Ino Y, Moriya Y, Sugihara K, Muto T, Hirohashi S, Cancer cell morphology at the invasive front and expression of cell adhesion-related carbohydrate in the primary lesion of patients with colorectal carcinoma with liver metastasis, Cancer 78(6), 1179–86 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    Ono M, Handa K, Withers DA, Hakomori S, Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation, Cancer Res 59, 2335–9 (1999).PubMedGoogle Scholar
  17. 17.
    Ono M, Handa K, Withers DA, Hakomori S, Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: A preliminary note on functional α3, α5-CD82 glycosylation complex in ldlD 14 cells, Biochem Biophys Res Commun 279, 744–50 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    Ono M, Handa K, Sonnino S, Withers DA, Nagai H, Hakomori S, GM3ganglioside inhibits CD9-facilitated haptotactic cell motility: Co-expression of GM3 and CD9 is essential in down-regulation of tumor cell motility and malignancy, Biochemistry 40(21), 6414–21 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    Phillips ML, Nudelman ED, Gaeta FCA, Perez M, Singhal AK, Hakomori S, Paulson JC, ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex, Science 250, 1130–2 (1990).PubMedGoogle Scholar
  20. 20.
    Shitara K, Hanai N, Yoshida H, Distribution of lung adenocarcinomaassociated antigens in human tissues and sera defined by monoclonal antibodies: KM-52 and KM-93, Cancer Res 47, 1267–72 (1987).PubMedGoogle Scholar
  21. 21.
    Dong J-T, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC, KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2, Science 268, 884–6 (1995).PubMedGoogle Scholar
  22. 22.
    Dong JT, Suzuki H, Pin SS, Bova S, Schalken JA, Isaacs WB, Barrett JC, Isaacs JT, Down-regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss, Cancer Res 56, 4387–90 (1996).PubMedGoogle Scholar
  23. 23.
    Miyake M, Koyama M, Seno M, Ikeyama S, Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell motility, J Exp Med 174, 1347–54 (1991).PubMedCrossRefGoogle Scholar
  24. 24.
    Cajot J-F, Sordat I, Silvestre T, Sordat B, Differential display cloning identifies motility-related protein (MRP1/CD9) as highly expressed in primary compared to metastatic human colon carcinoma cells, Cancer Res 57, 2593–7 (1997).PubMedGoogle Scholar
  25. 25.
    Maecker HT, Todd SC, Levy S, The tetraspanin superfamily: Molecular facilitators, FASEB J 11, 428–42 (1997).PubMedGoogle Scholar
  26. 26.
    Mannion BA, Berditchevski F, Kraeft S-K, Chen LB, Hemler ME, Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associate with integrin β1 (CD94d/CD29), J Immunol 157, 2039–47 (1996).PubMedGoogle Scholar
  27. 27.
    Rubinstein E, Le Naour F, Lagaudri`ere-Gesbert C, Billard M, Conjeaud H, Boucheix C, CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins, Eur J Immunol 26(11), 2657–65 (1996).PubMedGoogle Scholar
  28. 28.
    Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME,A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase, J Biol Chem 272, 2595–8 (1997).PubMedCrossRefGoogle Scholar
  29. 29.
    Serru V, LeNaour F, Billard M, Azorsa D O, Lanza F, Boucheix C, Rubinstein E, Selective tetraspan-integrin complexes (CD81/α4β1, CD151/α3β1, CD151/α6β1) under conditions disrupting tetraspan interactions, Biochem J 340(1), 103–11 (1999).PubMedCrossRefGoogle Scholar
  30. 30.
    Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, Rubinstein E, The major CD9 and CD81 molecular partner. Identification and characterization of the complexes, J Biol Chem 276(17), 14329–37 (2001).PubMedGoogle Scholar
  31. 31.
    Zheng M, Fang H, Hakomori S, Functional role of N-glycosylation in α5β1 integrin receptor: De-N-glycosylation induces dissociation or altered association of α5 and β1 subunits and concomitant loss of fibronectin binding activity, J Biol Chem 269, 12325–31 (1994).PubMedGoogle Scholar
  32. 32.
    Zheng M, Fang H, Tsuruoka T, Tsuji T, Sasaki T, Hakomori S, Regulatory role of GM3 ganglioside in α5β1 integrin receptor for fibronectin-mediated adhesion of FUA169 cells, J Biol Chem 268, 2217–22 (1993).PubMedGoogle Scholar
  33. 33.
    Kingsley DM, Kozarsky KF, Hobbie L, Krieger M, Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDPGalNAc 4-epimerase deficient mutant, Cell 44, 749–59 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    Krieger M, Reddy P, Kozarsky K, Kingsley D, Hobbie L, Penman M, Analysis of the synthesis, intracellular sorting, and function of glycoproteins using a mammalian cell mutant with reversible glycosylation defects, Meth Cell Biol 32, 57–84 (1989).CrossRefGoogle Scholar
  35. 35.
    Sonnino S, Nicolini M, Chigorno V, Preparation of radiolabeled gangliosides, Glycobiology 6(5), 479–87 (1996).PubMedGoogle Scholar
  36. 36.
    Kawakami Y, Kawakami K, Steelant WFA, Ono M, Baek RC, Handa K, Withers DA, Hakomori S, Tetraspanin CD9 is a “proteolipid”, and its interaction with α3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility, J Biol Chem 277(37), 34349–58 (2002).PubMedCrossRefGoogle Scholar
  37. 37.
    Inufusa H, Kojima N, Yasutomi M, Hakomori S, Human lung adenocarcinoma cell lines with different lung colonization potential (LCP), and a correlation between expression of sialosyl dimeric Lex (defined by MAb FH6) and LCP, Clin Expl Metastasis 9, 245–57 (1991).CrossRefGoogle Scholar
  38. 38.
    Kazui A, Ono M, Handa K, Hakomori S, Glycosylation affects translocation of integrin, Src, and caveolin into or out of GEM, Biochem Biophys Res Commun 273, 159–63 (2000).PubMedCrossRefGoogle Scholar
  39. 39.
    Kojima N, Hakomori S, Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction, J Biol Chem 266, 17552–8 (1991).PubMedGoogle Scholar
  40. 40.
    Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S,GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells, J Biol Chem 273, 9130–8 (1998).PubMedCrossRefGoogle Scholar
  41. 41.
    Iwabuchi K, Handa K, Hakomori S, Separation of “Glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling, J Biol Chem 273, 33766–73 (1998).PubMedCrossRefGoogle Scholar
  42. 42.
    Yamamura S, Handa K, Hakomori S, A close association of GM3 with c-Src and Rho in GM3-enriched microdomains at the B16 melanoma cell surface membrane: A preliminary note, Biochem Biophys Res Commun 236, 218–22 (1997).PubMedCrossRefGoogle Scholar
  43. 43.
    Hakomori S, Handa K, Glycosphingolipid microdomains in signal transduction, cancer, and development. In Oligosaccharides in Chemistry and Biology: A Comprehensive Handbook, edited by Ernst B, Sinay P, Hart G (Wiley-VCH, Weinheim, Germany, 2000), pp. 771–81.Google Scholar
  44. 44.
    Handa K, Jacobs F, Longenecker BM, Hakomori S, Association of MUC-1 and PSGL-1 with low-density microdomain in T-lymphocytes: A preliminary note, Biochem Biophys Res Commun 285, 788–94 (2001).PubMedCrossRefGoogle Scholar
  45. 45.
    Hakomori S, The glycosynapse, Proc Natl Acad Sci USA 99(1), 225–32 (2002).CrossRefGoogle Scholar
  46. 46.
    Fenderson BA, Eddy EM, Hakomori S, Glycoconjugate expression during embryogenesis and its biological significance, BioEssays 12(4), 173–9 (1990).PubMedCrossRefGoogle Scholar
  47. 47.
    Hakomori S, Handa K, Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: Essential basis to define tumor malignancy, FEBS Lett 531(1), 88–92 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Pacific Northwest Research InstituteSeattleUSA
  2. 2.Departments of Pathobiology and MicrobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations