Glycoconjugate Journal

, Volume 19, Issue 7–9, pp 583–591 | Cite as

Seeing strangers or announcing “danger”: Galectin-3 in two models of innate immunity



Recent investigations on the molecular mechanisms by which our immune system recognizes infections and initiates defense against those infections have led to the proposition of two models explaining the way our innate immunity system functions; the self-nonself model and the Danger model. In this review, the roles of galectin-3 in innate immunity against infections—host-pathogen interactions—will be discussed. We will shed light on the potential contribution of a β-galactoside binding mammalian lectin, galectin-3 as a molecule implicated in innate immunity from the angle of both the self-nonself model and the Danger model. Published in 2004.

galectin-3 innate immunity infectious diseases the danger model the self-nonself model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Janeway CA, Jr, Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb Symp Quant Biol 54, 1-13 (1989).Google Scholar
  2. 2.
    Medzhitov R, Janeway CA, Jr, Decoding the patterns of self and nonself by the innate immune system, Science 296, 298-300 (2002).Google Scholar
  3. 3.
    Matzinger P, Tolerance, Danger, and the extended family, Annu Rev Immunol 12, 991-1045 (1994).Google Scholar
  4. 4.
    Matzinger P, The Danger model: A renewed sense of self, Science 296, 301-5 (2002).Google Scholar
  5. 5.
    Mushegian A, Medzhitov R, Evolutionary perspective on innate immune recognition, J Cell Biol 155, 705-10 (2001).Google Scholar
  6. 6.
    Matzinger P, An innate sense of Danger, Semin Immunol 10, 399- 415 (1998).Google Scholar
  7. 7.
    Matzinger P, Essay 1: The Danger model in its historical context, Scand J Immunol 54, 4-9 (2001).Google Scholar
  8. 8.
    Matzinger P, Introduction to the series. Danger model of immunity, Scand J Immunol 54, 2-3 (2001).Google Scholar
  9. 9.
    Barondes SH, Cooper DN, Gitt MA, Leffler H, Galectins. Structure and function of a large family of animal lectins, J Biol Chem 269, 20807-10 (1994).Google Scholar
  10. 10.
    Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K, et al. Galectins: A family of animal beta-galactoside-binding lectins, Cell 76, 597-8 (1994).Google Scholar
  11. 11.
    Rabinovich GA, Galectins: An evolutionarily conserved family of animal lectins with multifunctional properties; a trip from the gene to clinical therapy, Cell Death Differ 6, 711-21 (1999).Google Scholar
  12. 12.
    Liu FT, Galectins: A new family of regulators of inflammation, Clin Immunol 97, 79-88 (2000).Google Scholar
  13. 13.
    Hughes RC, Galectins as modulators of cell adhesion, Biochimie 83, 667-76 (2001).Google Scholar
  14. 14.
    Lowe JB, Glycosylation, immunity, and autoimmunity, Cell 104, 809-12 (2001).Google Scholar
  15. 15.
    Perillo NL, Marcus ME, Baum LG, Galectins: Versatile modulators of cell adhesion, cell proliferation, and cell death, J Mol Med 76, 402-12 (1998).Google Scholar
  16. 16.
    Cooper DN, Barondes SH, God must love galectins; he made so many of them, Glycobiology 9, 979-84 (1999).Google Scholar
  17. 17.
    Yang RY, Hsu DK, Yu L, Ni J, Liu FT, Cell cycle regulation by galectin-12, a new member of the galectin superfamily, J Biol Chem 30, 30 (2001).Google Scholar
  18. 18.
    Visegrady B, Than NG, Kilar F, Sumegi B, Than GN, Bohn H, Homology modelling and molecular dynamics studies of human placental tissue protein 13 (galectin-13), Protein Eng 14, 875-80 (2001).Google Scholar
  19. 19.
    Dunphy JL, Barcham GJ, Bischof RJ, Young AR, Nash A, Meeusen EN, Isolation and characterization of a novel eosinophilspecific galectin released into the lungs in response to allergen challenge, J Biol Chem 277, 14916-24 (2002).Google Scholar
  20. 20.
    Hirabayashi J, Kasai K, The family of metazoan metalindependent beta-galactoside-binding lectins: Structure, function and molecular evolution, Glycobiology 3, 297-304 (1993).Google Scholar
  21. 21.
    Cherayil BJ, Chaitovitz S, Wong C, Pillai S, Molecular cloning of a human macrophage lectin specific for galactose, Proc Natl Acad Sci USA 87, 7324-8 (1990).Google Scholar
  22. 22.
    Cherayil BJ, Weiner SJ, Pillai S, The Mac-2 antigen is a galactose-specific lectin that binds IgE, J Exp Med 170, 1959-72 (1989).Google Scholar
  23. 23.
    Massa SM, Cooper DN, Leffler H, Barondes SH, L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity, Biochemistry 32, 260-7 (1993).Google Scholar
  24. 24.
    Hsu DK, Zuberi RI, Liu FT, Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin, J Biol Chem 267, 14167-74 (1992).Google Scholar
  25. 25.
    Ochieng J, Fridman R, Nangia-Makker P, Kleiner DE, Liotta LA, Stetler-Stevenson WG, Raz A, Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and-9, Biochemistry 33, 14109-14 (1994).Google Scholar
  26. 26.
    Herrmann J, Turck CW, Atchison RE, Huflejt ME, Poulter L, Gitt MA, Burlingame AL, Barondes SH, Leffler H, Primary structure of the soluble lactose binding lectin L-29 from rat and dog and interaction of its non-collagenous proline-, glycine-, tyrosine-rich sequence with bacterial and tissue collagenase, J Biol Chem 268, 26704-11 (1993).Google Scholar
  27. 27.
    Pelletier I, Sato S, Specific Recognition and Cleavage of Galectin-3 by Leishmania major through Species-specific Polygalactose Epitope, J Biol Chem 277, 17663-70 (2002).Google Scholar
  28. 28.
    Mazurek N, Conklin J, Byrd JC, Raz A, Bresalier RS, Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands, J Biol Chem 275, 36311-5 (2000).Google Scholar
  29. 29.
    Sparrow CP, Leffler H, Barondes SH, Multiple soluble betagalactoside-binding lectins from human lung, J Biol Chem 262, 7383-90 (1987).Google Scholar
  30. 30.
    Sato S, Hughes RC, Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin, J Biol Chem 267, 6983-90 (1992).Google Scholar
  31. 31.
    Lee RT, Ichikawa Y, Allen HJ, Lee YC, Binding characteristics of galactoside-binding lectin (galaptin) from human spleen, J Biol Chem 265, 7864-71 (1990).Google Scholar
  32. 32.
    Ahmed H, Allen HJ, Sharma A, Matta KL, Human splenic galaptin: Carbohydrate-binding specificity and characterization of the combining site, Biochemistry 29, 5315-9 (1990).Google Scholar
  33. 33.
    Lobsanov YD, Gitt MA, Leffler H, Barondes SH, Rini JM, X-ray crystal structure of the human dimeric S-Lac lectin, L-14-II, in complex with lactose at 2.9-A resolution, J Biol Chem 268, 27034- 8 (1993).Google Scholar
  34. 34.
    Lobsanov YD, Gitt MA, Leffler H, Barondes S, Rini JM, Crystallization and preliminary X-ray diffraction analysis of the human dimeric S-Lac lectin (L-14-II), J Mol Biol 233, 553-5 (1993).Google Scholar
  35. 35.
    Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH, Rini JM, X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution, J Biol Chem 273, 13047-52 (1998).Google Scholar
  36. 36.
    Henrick K, Bawumia S, Barboni EA, Mehul B, Hughes RC, Evidence for subsites in the galectins involved in sugar binding at the nonreducing end of the central galactose of oligosaccharide ligands: Sequence analysis, homology modeling and mutagenesis studies of hamster galectin-3, Glycobiology 8, 45-57 (1998).Google Scholar
  37. 37.
    Gorski JP, Liu FT, Artigues A, Castagna LF, Osdoby P, New alternatively spliced form of galectin-3, a member of the betagalactoside-binding animal lectin family, contains a predicted transmembrane-spanning domain and a leucine zipper motif, J Biol Chem 277, 18840-8 (2002).Google Scholar
  38. 38.
    Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG, Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia, J Immunol 168, 1813-22 (2002).Google Scholar
  39. 39.
    Hughes RC, Secretion of the galectin family of mammalian carbohydrate-binding proteins, Biochim Biophys Acta 1473, 172- 85 (1999).Google Scholar
  40. 40.
    Rubartelli A, Cozzolino F, Talio M, Sitia RA, novel secretory pathway for interleukin-1b, a protein lacking a signal sequence, EMBO J 9, 1503-10 (1990).Google Scholar
  41. 41.
    Rubartelli A, Sitia R, Interleukin 1b and thioredoxin are secreted through a novel pathway of secretion, Biochem Soc Trans 19, 255- 9 (1991).Google Scholar
  42. 42.
    Muesch A, Hartmann E, Rohde K, Rubartelli A, Sitia R, Rapoport TA, A novel pathway for secretory proteins?, Trends Biochem Sci 15, 86-8 (1990).Google Scholar
  43. 43.
    Andrei C, Dazzi C, Lotti L, Torrisi MR, Chimini G, Rubartelli A, The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles, Mol Biol Cell 10, 1463-75 (1999).Google Scholar
  44. 44.
    Friesel R, Maciag T, Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling, Thromb Haemost 82, 748-54 (1999).Google Scholar
  45. 45.
    Mignatti P, Morimoto T, Rifkin DB, Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex, J Cell Physiol 151, 81-93 (1992).Google Scholar
  46. 46.
    Florkiewicz RZ, Majack RA, Buechler RD, Florkiewicz E, Quantitative export of FGF-2 occurs through an alternative, energydependent, non-ER/Golgi pathway, J Cell Physiol 162, 388-99 (1995).Google Scholar
  47. 47.
    Sato S, Burdett I, Hughes RC, Secretion of the baby hamster kidney 30-kDa galactose-binding lectin from polarized and nonpolarized cells: A pathway independent of the endoplasmic reticulum-Golgi complex, Exp Cell Res 207, 8-18 (1993).Google Scholar
  48. 48.
    Sato S, Hughes RC, Regulation of secretion and surface expression of Mac-2, a galactoside-binding protein of macrophages, J Biol Chem 269, 4424-30 (1994).Google Scholar
  49. 49.
    Sato S, Hughes RC, Control of Mac-2 surface expression on murine macrophage cell lines, Eur J Immunol 24, 216-21 (1994).Google Scholar
  50. 50.
    Lindstedt R, Apodaca G, Barondes SH, Mostov KE, Leffler H, Apical secretion of a cytosolic protein by Madin-Darby Canine Kidney cells, J Biol Chem 268, 11750-7 (1993).Google Scholar
  51. 51.
    Liu FT, Hsu DK, Zuberi RI, Kuwabara I, Chi EY, Henderson WR, Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages, Am J Pathol 147, 1016-28 (1995).Google Scholar
  52. 52.
    Rogelj S, Weinberg RA, Fanning P, Klagsbrun M, Basic fibroblast growth factor fused to a signal peptide transforms cells, Nature 331, 173-5 (1988).Google Scholar
  53. 53.
    Sato S, Galectin as a molecule of Danger signal, which could evoke immune response to infection, Trends Glycosci Glycotechnol 14, 285-301 (2002).Google Scholar
  54. 54.
    Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, Hirashima M, Liu FT, Human galectin-3 is a novel chemoattractant for monocytes and macrophages, J Immunol 165, 2156-64 (2000).Google Scholar
  55. 55.
    Kuwabara I, Liu FT, Galectin-3 promotes adhesion of human neutrophils to laminin, J Immunol 156, 3939-44 (1996).Google Scholar
  56. 56.
    Gupta SK, Masinick S, Garrett M, Hazlett LD, Pseudomonas aeruginosa lipopolysaccharide binds galectin-3 and other human corneal epithelial proteins, Inf Immun 65, 2747-53 (1997).Google Scholar
  57. 57.
    Dong S, Hughes RC, Galectin-3 stimulates uptake of extracellular Ca2+ in human Jurkat T-cells, FEBS Lett 395, 165-9 (1996).Google Scholar
  58. 58.
    Yamaoka A, Kuwabara I, Frigeri LG, Liu FT, A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils, J Immunol 154, 3479-87 (1995).Google Scholar
  59. 59.
    Karlsson A, Follin P, Leffler H, Dahlgren C, Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils, Blood 91, 3430-8 (1998).Google Scholar
  60. 60.
    Jeng KC, Frigeri LG, Liu FT, An endogenous lectin, galectin-3 (epsilon BP/Mac-2), potentiates IL-1 production by human monocytes, Immunol Lett 42, 113-6 (1994).Google Scholar
  61. 61.
    Frigeri LG, Zuberi RI, Liu F-T, epsilonBP, a β-galactoside-binding animal lectin, recognizes IgE receptor (FceRI) and activates mast cells, Biochemistry 32, 7644-9 (1993).Google Scholar
  62. 62.
    Cortegano I, del Pozo V, Cardaba B, de Andres B, Gallardo S, del Amo A, Arrieta I, Jurado A, Palomino P, Liu FT, Lahoz C, Galectin-3 down-regulates IL-5 gene expression on different cell types, J Immunol 161, 385-9 (1998).Google Scholar
  63. 63.
    Cortegano I, Pozo V, Cardaba B, Arrieta I, Gallardo S, Rojo M, Aceituno E, Takai T, Verbeek S, Palomino P, Liu FT, Lahoz C, Interaction between galectin-3 and FcgammaRII induces down-regulation of IL-5 gene: Implication of the promoter sequence IL-5REIII, Glycobiology 10, 237-42 (2000).Google Scholar
  64. 64.
    Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A, Galectin-3 induces endothelial cell morphogenesis and angiogenesis, Am J Pathol 156, 899-909 (2000).Google Scholar
  65. 65.
    Demetriou M, Granovsky M, Quaggin S, Dennis JW, Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation, Nature 409, 733-9 (2001).Google Scholar
  66. 66.
    Krugluger W, Frigeri LG, Lucas T, Schmer M, Forster O, Liu FT, Boltz-Nitulescu G, Galectin-3 inhibits granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven rat bone marrow cell proliferation and GM-CSF-induced gene transcription, Immunobiology 197, 97-109 (1997).Google Scholar
  67. 67.
    Medzhitov R, Toll-like receptors and innate immunity, Nature Rev Immunol 1, 135-45 (2001).Google Scholar
  68. 68.
    Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA, Phylogenetic perspectives in innate immunity, Science 284, 1313-8 (1999).Google Scholar
  69. 69.
    Mandrell RE, Apicella MA, Lindstedt R, Leffler H, Possible interaction between animal lectins and bacterial carbohydrates, Methods Enzimol 236, 231-54 (1994).Google Scholar
  70. 70.
    Mey A, Leffler H, Hmama Z, Normier G, Revillard JP, The animal lectin galectin-3 interacts with bacterial lipopolysaccharides via two independent sites, J Immunol 156, 1572-7 (1996).Google Scholar
  71. 71.
    Haziot A, Hijiya N, Gangloff SC, Silver J, Goyert SM, Induction of a novel mechanism of accelerated bacterial clearance by lipopolysaccharide in CD14-deficient and Toll-like receptor 4-deficient mice, J Immunol 166, 1075-8 (2001).Google Scholar
  72. 72.
    Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM, Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice, Immunity 4, 407-14 (1996).Google Scholar
  73. 73.
    Weis WI, Drickamer K, Structural basis of lectin-carbohydrate recognition, Annu Rev Biochem 65, 441-73 (1996).Google Scholar
  74. 74.
    Janeway CA, Travers P, Walport M, Capra JD, In: Immunobiology, 4th ed. (Elsevier Science Ltd, 1999), pp 363-415.Google Scholar
  75. 75.
    Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG, Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis, J Exp Med 187, 813-8 (1998).Google Scholar
  76. 76.
    Lee RT, Lee YC, Affinity enhancement by multivalent lectincarbohydrate interaction, Glycoconj J 17, 543-51 (2000).Google Scholar
  77. 77.
    Sacchettini JC, Baum LG, Brewer CF, Multivalent proteincarbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction, Biochemistry 40, 3009-15 (2001).Google Scholar
  78. 78.
    Ho M-K, Springer TA, MAC-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies, J Immunol 128, 1221-7 (1982).Google Scholar
  79. 79.
    Flotte TJ, Springer TA, Thorbecke GJ, Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets, Am J Pathol 111, 112-24 (1983).Google Scholar
  80. 80.
    Frigeri LG, Liu FT, Surface expression of functional IgE binding protein, an endogenous lectin, on mast cells and macrophages, J Immunol 148, 861-7 (1992).Google Scholar
  81. 81.
    Moody SF, Molecular variation in Leishmania, Acta Tropica 53, 184-204 (1993).Google Scholar
  82. 82.
    Berman JD, Human leishmaniasis: Clinical, diagnostic, and chemotherapeutic developments in the last 10 years, Clin Infect Dis 24 (1997).Google Scholar
  83. 83.
    Bergan T, Pathogenetic factors of Pseudomonas aeruginosa, Scand J Infect Dis Suppl 29, 7-12 (1981).Google Scholar
  84. 84.
    Yi AK, Tuetken R, Redford T, Waldschmidt M, Kirsch J, Krieg AM, CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species, J Immunol 160, 4755-61 (1998).Google Scholar
  85. 85.
    Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG, Heat-shock proteins as activators of the innate immune system, Trends Immunol 23, 130-5 (2002).Google Scholar
  86. 86.
    Burgess WH, Maciag T, The heparin-binding (fibroblast) growth factor family of proteins, Annu Rev Biochem 58, 575-606 (1989).Google Scholar
  87. 87.
    Bertini R, Howard OM, Dong HF, Oppenheim JJ, Bizzarri C, Sergi R, Caselli G, Pagliei S, Romines B, Wilshire JA, Mengozzi M, Nakamura H, Yodoi J, Pekkari K, Gurunath R, Holmgren A, Herzenberg LA, Ghezzi P, Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells, J Exp Med 189, 1783-9 (1999).Google Scholar
  88. 88.
    Kerkhoff C, Klempt M, Sorg C, Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9), Biochim Biophys Acta 1448, 200-11 (1998).Google Scholar
  89. 89.
    Dinarello CA, Cannon JC, Mier JW, Multiple biological activities of human recombinant interleukin-1, J Clin Invest 77, 1734-9 (1986).Google Scholar
  90. 90.
    Louahed J, Zhou Y, Maloy WL, Rani PU, Weiss C, Tomer Y, Vink A, Renauld J, Van Snick J, Nicolaides NC, Levitt RC, Haczku A, Interleukin 9 promotes influx and local maturation of eosinophils, Blood 97, 1035-42 (2001).Google Scholar
  91. 91.
    Bergeron Y, Ouellet N, Deslauriers AM, Simard M, Olivier M, Bergeron MG, Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice, Infect Immun 66, 912-22 (1998).Google Scholar
  92. 92.
    Fillion I, Ouellet N, Simard M, Bergeron Y, Sato S, Bergeron MG, Role of chemokines and formyl peptides in pneumococcal pneumonia-induced monocyte/macrophage recruitment, J Immunol 166, 7353-61 (2001).Google Scholar
  93. 93.
    Colnot C, Ripoche MA, Milon G, Montagutelli X, Crocker PR, Poirier F, Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3-null mutant mice, Immunology 94, 290-6 (1998).Google Scholar
  94. 94.
    Hsu DK, Yang RY, Pan Z, Yu L, Salomon DR, Fung-Leung WP, Liu FT, Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses, AmJ Pathol 156, 1073-83 (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Glycobiology Laboratory, Research Centre for Infectious DiseasesLaval University, Medical Centre, Centre Hospitalier Universitaire de QuébecSte-FoyCanada

Personalised recommendations