Glycoconjugate Journal

, Volume 19, Issue 7–9, pp 451–458

The speciation of conger eel galectins by rapid adaptive evolution

  • Tomohisa Ogawa
  • Tsuyoshi Shirai
  • Clara Shionyu-Mitsuyama
  • Takashi Yamane
  • Hisao Kamiya
  • Koji Muramoto
Article

Abstract

Many cases of accelerated evolution driven by positive Darwinian selection are identified in the genes of venomous and reproductive proteins. This evolutional phenomenon might have important consequences in their gene-products' functions, such as multiple specific toxins for quick immobilization of the prey and the establishment of barriers to fertilization that might lead to speciation, and in the molecular evolution of novel genes. Recently, we analyzed the molecular evolution of two galectins isolated from the skin mucus of conger eel (Conger myriaster), named congerins I and II, by cDNA cloning and X-ray structural analysis, and we found that they have evolved in the rapid adaptive manner to emergence of a new structure including strand-swapping and a unique new ligand-binding site. In this review article we summarize and discuss the molecular evolution, especially the rapid adaptive evolution, and the structure-function relationships of conger eel galectins. Published in 2004.

adaptive evolution conger eel domain swapping galectin X-ray crystal structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duda TF Jr, Palumbi SR, Molecular genetics of ecological diversification: Duplication and rapid evolution of toxin genes of the venomous gastropod Conus, Proc Natl Acad Sci USA 96, 6820-3 (1999).Google Scholar
  2. 2.
    Duda TF Jr, Palumbi SR, Evolutionary diversification of multigene families: Allelic selection of toxins in predatory cone snails, Mol Biol Evol 17, 1286-93 (2000).Google Scholar
  3. 3.
    Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M, Mechanisms for evolving hypervariability: The case for conopeptides, Mol Biol Evol 18, 120-31 (2001).Google Scholar
  4. 4.
    Olivera BM, Walker C, Cartier GE, Hooper D, Santos AD, Schoenfeld R, Shetty R, Watkins M, Bandyopadhyay P, Hillyard DR, Speciation of cone snails and interspecific hyperdivergence of their venom peptides: Potential evolutionary significance of introns, Ann New York Acad Sci 223-37 (1999).Google Scholar
  5. 5.
    Froy O, Sagiv T, Poreh M, Urbach D, Zilberberg N, Gurevitz M, Dynamic diversification from a putative common ancestor of scorpion toxins affecting sodium, potassium, and chloride channels, J Mol Evol 48, 187-96 (1999).Google Scholar
  6. 6.
    Ogawa T, Oda N, Nakashima K, Sasaki H, Hattori M, Sakaki Y, Kihara H, Ohno M, Unusually high conservation of untranslated sequences in cDNAs for Trimeresurus flavoviridis phospholipase A2 isozymes, Proc Natl Acad Sci USA 89, 8557-61 (1992).Google Scholar
  7. 7.
    Nakashima K, Ogawa T, Oda N, Hattori M, Sakaki Y, Kihara H, Ohno M, Accelerated evolution of Trimeresurus flavoviridis venom gland phospholipaseA2 isozymes, Proc Natl Acad Sci USA 90, 5964-8 (1993).Google Scholar
  8. 8.
    Nakashima K, Nobuhisa I, Deshimaru M, Nakai M, Ogawa T, Shimohigashi Y, Fukumaki Y, Hattori M, Sakaki Y, Hattori S, Ohno M, Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes, Proc Natl Acad Sci 92, 5605-9 (1995).Google Scholar
  9. 9.
    Nobuhisa I, Nakashima K, Deshimaru M, Ogawa T, Shimohigashi Y, Fukumaki Y, Sakaki Y, Hattori S, Kihara H, Ohno M, Accelerated evolution of Trimeresurus okinavensis venom gland phospholipase A2 isozyme-encoding genes, Gene 172, 267-72 (1996).Google Scholar
  10. 10.
    John TR, Smith LA, Kaiser II, Genomic sequences encoding the acidic and basic subunits of Mojave toxin: Unusually high sequence identity of non-coding regions, Gene 139, 229-34 (1994).Google Scholar
  11. 11.
    Kordis D, Gubensek F, AmmodytoxinCgene helps to elucidate the irregular structure of Crotalinae group II phospholipase A2 genes, Eur J Biochem 240, 83-90 (1996).Google Scholar
  12. 12.
    Kordis D, Bdolah A, Gubensek F, Positive Darwinian selection in vipera palaestinae phospholipase A2 genes is unexpectedly limited to the third exon, Biochem Biophys Res Commun 251, 613-9 (1997).Google Scholar
  13. 13.
    Deshimaru M, Ogawa T, Nakashima K, Nobuhisa I, Chijiwa T, Shimohigashi Y, Fukumaki Y, Niwa M, Yamashina I, Hattori S, Ohno M, Accelerated evolution of crotalinae snake venom gland serine proteases, FEBS Lett 397, 83-8 (1996).Google Scholar
  14. 14.
    Ohno M, Menez R, Ogawa T, Danse JM, Shimohigashi Y, Fromen C, Ducancel F, Zinn-Justin S, Le Du MH, Boulain JC, Tamiya T, Menez A, Molecular evolution of snake toxins: Is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog Nucleic Acid Res Mol Biol 59, 307-64 (1998).Google Scholar
  15. 15.
    Lachumanan R, Armugam A, Tan CH, Jeyaseelan K, Structure and organization of the cardiotoxin genes in Naja naja sputatrix, FEBS Lett 14, 119-24 (1998).Google Scholar
  16. 16.
    Atoda H, Yoshihara E, Yamada M, Morita T, cDNA cloning of a heterogeneous two-chain anticoagulant protein IX-bp, Thromb Res 87, 271-8 (1997).Google Scholar
  17. 17.
    Shin Y, Okuyama I, Hasegawa J, Morita T, Molecular cloning of glycoprotein Ib-binding protein, flavocetin-A, which inhibits platelet aggregation, Thromb Res 99, 239-47 (2000).Google Scholar
  18. 18.
    Tani A, Ogawa T, Nose T, Nikandrov N, Deshimaru M, Chijiwa T, Chang C, Fukumaki Y, Ohno M, Characterization, primary structure and molecular evolution of anticoagulant protein from Agkistrodon actus venom, Toxicon 40, 803-13 (2002).Google Scholar
  19. 19.
    Swanson WJ, Vacquier VD, The rapid evolution of reproductive proteins, Nature Rev Genetics 3, 137-44 (2002).Google Scholar
  20. 20.
    Hirabayashi J, Saitoh M, Kasai K, Evidence that Caenorhabditis elegans 32-kDa beta-galactoside-binding protein is homologous to vertebrate beta-galactoside-binding lectins. cDNA cloning and deduced amino acid sequence, J Biol Chem 267, 15485-90 (1992).Google Scholar
  21. 21.
    Kasai K, Hirabayshi J, Galectins: A family of animal lectins that decipher glycocodes, J Biochem 119, 1-8 (1996).Google Scholar
  22. 22.
    Inagaki Y, Sohma Y, Horie H, Nozawa R, Kadoya T, Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties, Eur J Biochem 267, 2955-64 (2000).Google Scholar
  23. 23.
    Kamiya H, Muramoto K, Goto R, Purification and properties of agglutinins from conger eel, Conger Myriaster (Brevoort), skin mucus, Dev Comp Immuno 12, 309-18 (1988).Google Scholar
  24. 24.
    Muramoto K, Kamiya H, The amino-acid sequence of a lectin from conger eel, Conger myriaster, skin mucus, Biochim Biophys Acta 1116, 129-36 (1992).Google Scholar
  25. 25.
    Muramoto K, Kagawa D, Sato T, Ogawa T, Nishida Y, Kamiya H, Functional and structural characterization of multiple galectins from the skin mucus of conger eel, Conger myriaster, Comp Biochem Physiol B 123, 33-45 (1999).Google Scholar
  26. 26.
    Ingram GA, Substances involved in the natural resistance of fish to infection-A review, J Fish Biol 16, 23-60 (1980).Google Scholar
  27. 27.
    Ogawa T, Ishii C, Kagawa D, Muramoto K, Kamiya H, Accelerated evolution in the protein-coding region of galectin cDNAs, congerin I and congerin II, from skin mucus of conger eel (Conger myriaster), Biosci Biotechnol Biochem 63, 1203-8 (1999).Google Scholar
  28. 28.
    Nakamura O, Watanabe T, Kamiya H, Muramoto K, Galectin containing cells in the skin and mucosal tissues in Japanese conger eel, Conger myriaster:Animmunohistochemical study, Dev Comp Immuno 25, 431-7 (2001).Google Scholar
  29. 29.
    Nei M, Molecular Evolutionary Genetics (Columbia Univ. Press, Irvington-on-Hudson, N.Y., 1987).Google Scholar
  30. 30.
    Inagawa H, Kuroda A, Nishizawa T, Honda T, Ototake M, Yokomizo Y, Nakanishi T, Soma G, Fish &; Shellfish Immunol 11, 217-31 (2001).Google Scholar
  31. 31.
    Lee J, Jeon J, Song Y, unpublished data (Sequence data was available with accession number AF220550 from Genbank/ EMBL/DDBJ data base) (2000).Google Scholar
  32. 32.
    Shirai T, Mitsuyama C, Niwa Y, Matsui Y, Hotta H, Yamane T, Kamiya H, Ishii C, Ogawa T, Muramoto K, High-resolution structure of conger eel galectin, congerin I, in lactose-liganded and ligand-free forms: Emergence of a new structure class by accelerated evolution, Structure 7, 1223–33 (1999).Google Scholar
  33. 33.
    Shirai T, Matsui Y, Mitsuyama C, Yamane T, Kamiya H, Ishii C, Ogawa T, Muramoto K, Crystal structure of a conger eel galectin (congerin II) at 1.45 A resolution: Implication for the accelerated evolution of a new ligand-binding site following gene duplication, J Mol Biol 321, 879-89 (2002).Google Scholar
  34. 34.
    Liao DI, Kapadia G, Ahmed H, Vasta GR, Herzberg O, Structure of S-lectin, a developmentally regulated vertebrate β-galactoside-binding protein, Proc Natl Acad Sci USA 91, 1428-32 (1994).Google Scholar
  35. 35.
    Bourne Y, Bolgiano B, Liao D, Strecjer G, Cantau P, Herzberg O, Feizi T, Cambillau C, Cross-linking of mammalian lectin (galectin-1) by complex biantennary saccharides,Nature Struct Biol 1, 863- 70 (1994).Google Scholar
  36. 36.
    Lobsanov YD, Gitt MA, Leffler H, Barondes SH, Rini JM, Xray crystal structure of the human dimeric S-lac lectin, L-14-II, in complex with lactose at 2.9-Å resolution, J Biol Chem 268, 27034-8 (1993).Google Scholar
  37. 37.
    Leonidas DD, Vatzaki EH, Vorum H, Celis JE, Madsen P, Acharya KR, Structural basis for the recognition of carbohydrates by human galectin-7, Biochem 37, 13930-40 (1998).Google Scholar
  38. 38.
    Leonidas DD, Elbert BL, Zhou Z, Leffler H, Ackerman SJ, Acharya KR, Crystal structure of human Charcot-Leyden crystal protein, an eosinophil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins, Structure 3, 1379-93 (1995).Google Scholar
  39. 39.
    Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH, Rini JM, X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-Å resolution, J Biol Chem 273, 13047-52 (1998).Google Scholar
  40. 40.
    Varela PF, Solis D, Diaz-Maurin TG, Kaltner H, Gabius HJ, Romero A, The 2.15 Å crystal structure of CG-16, the developmentally regulated homodimeric chicken galectin, J Mol Biol 294, 537-49 (1999).Google Scholar
  41. 41.
    Bianchet MA, Ahmed H, Vasta GR, Amzel LM, Soluble betagalactosyl-binding lectin (galectin) from toad ovary: Crystallographic studies of two protein-sugar complexes, Proteins 40, 378- 88 (2000).Google Scholar
  42. 42.
    Bennett MJ, Schlunegger MP, Eisenberg D, 3D domain swapping: A mechanism for oligomer assembly, Protein Sci 4, 2455-68 (1995).Google Scholar
  43. 43.
    Schlunegger MP, Benett MJ, Eisenberg D, Oligomer formation by 3D domain swapping: A model for protein assembly and misassembly, Adv Protein Chem 50, 61-122 (1997).Google Scholar
  44. 44.
    Mizuno H, Fujimoto Z, Koizumi M, Kano H, Atoda H, Morita T, Structure of coagulation factors IX/X-binding protein, a heterodimer of C-type lectin domains, Nat Struct Biol 4, 438-41 (1997).Google Scholar
  45. 45.
    Mizuno H, Fujimoto Z, Koizumi M, Kano H, Atoda H, Morita T, Crystal structure of coagulation factor IX-binding protein from habu snake venom at 2.6 A: Implication of central loop swapping based on deletion in the linker region, J Mol Biol 289, 103-12 (1999).Google Scholar
  46. 46.
    Fukuda K, Mizuno H, Atoda H, Morita T, Crystal structure of flavocetin-A, a platelet glycoprotein Ib-binding protein, reveals a novel cyclic tetramer of C-type lectin-like heterodimers, Biochemistry 39, 1915-23 (2000).Google Scholar
  47. 47.
    Sen U, Vasudevan S, Subbarao G, McClintock RA, Celikel R, Ruggeri ZM, Varughese KI, Crystal structure of the von Willebrand factor modulator botrocetin, Biochemistry 40, 345-52 (2001).Google Scholar
  48. 48.
    Hirotsu S, Mizuno H, Fukuda K, Qi MC, Matsui T, Hamako J, Morita T, Titani K, Crystal structure of bitiscetin, a vonWillebrand factor-dependent platelet aggregation inducer, Biochemistry 40, 13592-7 (2001).Google Scholar
  49. 49.
    Cooke J, Nowak MA, Boerlijst M, Maynard-Smith J, Evolutionary origins and maintenance of redundant gene expression during metazoan development, Trends Genet 13, 360-4 (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Tomohisa Ogawa
    • 1
  • Tsuyoshi Shirai
    • 2
  • Clara Shionyu-Mitsuyama
    • 2
  • Takashi Yamane
    • 3
  • Hisao Kamiya
    • 4
  • Koji Muramoto
    • 1
  1. 1.Department of Biomolecular Science, Graduate School of Life SciencesTohoku UniversitySendai
  2. 2.Department of Computational BiologyBiomolecular Engineering Research InstituteOsaka
  3. 3.Department of Biotechnology and Biomaterial Chemistry, Graduate School of EngineeringNagoya UniversityNagoya
  4. 4.School of Fisheries SciencesKitasato UniversityIJapan

Personalised recommendations