General Relativity and Gravitation

, Volume 36, Issue 10, pp 2373–2416 | Cite as

OPTIS—An Einstein Mission for Improved Tests of Special and General Relativity

  • C. Lämmerzahl
  • I. Ciufolini
  • H. Dittus
  • L. Iorio
  • H. Müller
  • A. Peters
  • E. Samain
  • S. Scheithauer
  • S. Schiller

Abstract

The mission OPTIS aims at improving tests of the foundations of Special and General Relativity by up to three orders of magnitude. The individual tests concern

• the isotropy and

• constancy of the speed of light,

• the time dilation (or Doppler effect),

• the universality of the gravitational redshift with various combinations of high precision clocks. Furthermore, laser tracking and a laser link allows

• a strongly improved measurement of the gravitomagnetic Lense–Thirring effect,

• of the gravitoelectric Einstein perigee advance,

• of the gravitational redshift, and

• a search for deviations from Newtonian gravity.

For this mission, technologies are required which have been used recently to carry through the most precise tests of Special Relativity. The precision of these tests can be further increased under space conditions thanks to longer integration times, larger changes in the orbital velocity, and larger differences of the gravitational potential. Furthermore, very precise laser tracking and linking of satellites is a well established technique and will provide, in combination with the active drag–free control system, very accurate orbit data. The core technologies for OPTIS are optical cavities, highly stabilized lasers, capacitive gravitational reference sensors, drag–free control, ion clocks, frequency combs, and laser tracking systems. These technologies are also key technologies for other future missions.

Special Relativity General Relativity constancy of speed of light gravitational redshift Lense–Thirring effect laser ranging time transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    Quinn, T. (1995). Metrologia 31, 515.Google Scholar
  2. [2]
    M¨ uller, H., Herrmann, S., Braxmaier, C., Schiller, S., and Peters, A. (2003). Phys. Rev. Lett 91, 020401.Google Scholar
  3. [3]
    Wolf, P., Bize, S., Clairon, A., Luiten, A. L., Santarelli, G., and Tobar, M. E. (2003). Phys. Rev. Lett 90, 060402.Google Scholar
  4. [4]
    Saathoff, G., Karpuk, S., Eisenbarth, U., Huber, G., Krohn, S., Muñoz-Horta, R., Reinhardt, S., Schwalm, D., Wolf, A., and Gwinner, G. (2003). Phys. Rev. Lett 91, 190403.Google Scholar
  5. [5]
    Turneaure, J. P., Will, C. M., Farrel, B. F., Mattison, E. M., and Vessot, R. F. C. (1983). Phys. Rev 27, 1705.Google Scholar
  6. [6]
    Bauch, A., and Weyers, S. (2002). Phys.Rev. D65, 081101(R).Google Scholar
  7. [7]
    Vessot, R. F. C., Levine, M. W., Mattison, E. M., Blomberg, E. L., Hoffmann, T. E., Nystrom, G. U., Farrel, B. F., Decher, R., Eby, P. B., Baughter, C. R., Watts, J. W., Teuber, D. L., and Wills, F. D. (1980). Phys. Rev. Lett 45, 2081.Google Scholar
  8. [8]
    Ciufolini, I. (2000). Class. Quant. Grav 17, 2369.Google Scholar
  9. [9]
    Iorio, L., Ciufolini, I., Schiller, S., Dittus, H., and L¨ ammerzahl, C. (in press). Class. Quant. Grav. 21.Google Scholar
  10. [10]
    Shapiro, I. I. (1990). In General Relativity and Gravitation, N. Ashby, D. F. Bartlett, and W.Wyss (Eds.), Cambridge University Press, Cambridge, p. 313.Google Scholar
  11. [11]
    Fischbach, E., and Talmadge, C. L. (1999). The Search for Non-Newtonian Gravity, Springer-Verlag, New York.Google Scholar
  12. [12]
    Ries, J., Eanes, R. J., and Tapley, B. D. (2003). In Nonlinear Gravitodynamics,R.J. Ruffini and C. Sigismondi (Eds.), World Scientific, Singapore, p. 201.Google Scholar
  13. [13]
    Iorio, L. (2003). Celest. Mech. Dyn. Astron 86, 277.Google Scholar
  14. [14]
    Iorio, L., and Morea, A. (2004). Gen. Relat. Grav 36, 1321 (gr-qc/0304011).Google Scholar
  15. [15]
    Iorio, L. (2002). Phys. Lett 298, 315.Google Scholar
  16. [16]
    Lucchesi, D. M. (2003). Phys. Lett. A 318, 234.Google Scholar
  17. [17]
    L¨ ammerzahl, C., Braxmaier, C., Dittus, H.-J., M¨ uller, H., Peters, A., and Schiller, S. (2002). Int. J. Mod. Phys. D 11, 1109.Google Scholar
  18. [18]
    Mansouri, R., and Sexl, R. U. ( 1977). Gen. Relat. Grav. 8, 497.Google Scholar
  19. [19]
    Mansouri, R., and Sexl, R. U. (1977). Gen. Relat. Grav. 8, 515.Google Scholar
  20. [20]
    Mansouri, R., and Sexl, R. U. (1977). Gen. Relat. Grav. 8, 809.Google Scholar
  21. [21]
    Will, C. M. (1992). Int. J. Mod. Phys. D 1, 13.Google Scholar
  22. [22]
    Thorne, K. S., Lee, D. L., and Lightman, A. P. (1973). Phys. Rev. D 7, 3563.Google Scholar
  23. [23]
    Haugan, M. P. (1979). Ann. Phys 118, 156.Google Scholar
  24. [24]
    Will, C. M. (1993). Theory and Experiment in Gravitational Physics (Revised Edition), Cambridge University Press, Cambridge.Google Scholar
  25. [25]
    Ni, W.-T. (1977). Phys. Rev. Lett 38, 301.Google Scholar
  26. [26]
    Ni, W.-T. (1984). In Precision Measurement and Fundamental Constants II,B.N. Taylor and W. D. Phillips (Eds.), Natl. Bur. Stand. (U.S.), Speical Publication no. 617, p. 647.Google Scholar
  27. [27]
    Carroll, S. M., Field, G. B., and Jackiw, R. (1990). Phys. Rev. D 41, 1231.Google Scholar
  28. [28]
    Haugan, M. P., and Kauffmann, T. F. (1995). Phys.Rev. D52, 3168.Google Scholar
  29. [29]
    Kostelecky, A., and Mewes, M. (2001). Phys. Rev. Lett 87, 251304.Google Scholar
  30. [30]
    Kostelecky, A., and Mewes, M. (2002). Phys.Rev. D66, 056005.Google Scholar
  31. [31]
    L¨ ammerzahl, C., and Haugan, M. P. (2001). Phys. Lett. A 282, 223.Google Scholar
  32. [32]
    Kostelecky, V. A., and Samuel, S. (1999). Phys. Rev. D 39, 683.Google Scholar
  33. [33]
    Ellis, J., Mavromatos, N. E., Nanopoulos, D. V., and Volkov, G. (1999). gr-qc/9911055.Google Scholar
  34. [34]
    Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. (1999). gr-qc/9909085.Google Scholar
  35. [35]
    Gambini, R., and Pullin, J. (1999). Phys. Rev. D 59, 124021.Google Scholar
  36. [36]
    Alfaro, J., Morales-Tecotl, H. A., and Urrutia, L. F. (2000). Phys. Rev. Lett 84, 2318.Google Scholar
  37. [37]
    Carroll, S. M., Harvey, J. A., Kostelecki, V. A., Lane, C. D., and Okamoto, T. (2001). Phys. Rev. Lett 87, 141601.Google Scholar
  38. [38]
    Alfaro, J., Morales-Tecotl, H. A., and Urrutia, L. F. (2002). Phys. Rev. D 65, 103509.Google Scholar
  39. [39]
    Alfaro, J., Morales-Tecotl, H. A., and Urrutia, L. F. (2002). Phys. Rev. D 66, 124006.Google Scholar
  40. [40]
    Ni, W.-T. (1973). A Nonmetric Theory of Gravity. Montana State University, Bozeman, MT. Available from http://gravity5.phys.nthu.edu.tw.Google Scholar
  41. [41]
    Ni, W.-T. (1974). Bull. Am. Phys. Soc 19, 655.Google Scholar
  42. [42]
    Colladay, D., and Kostelecky, V. A. (1997). Phys. Rev. D 55, 6760.Google Scholar
  43. [43]
    Colladay, D., and Kostelecky, V. A. (1998). Phys. Rev. D 58, 116002.Google Scholar
  44. [44]
    Ni, W.-T. (1984). In Proceedings of the Second Asian-Pacific Regional Meeting on Astronomy, B. Hidayat and M. W. Feast (Eds.), Tira Pustaka., Jakarta, p. 441.Google Scholar
  45. [45]
    M¨ uller, H., Braxmaier, C., Herrmann, S., Peters, A., and L¨ ammerzahl, C. (2003). Phys. Rev. D 67, 056006.Google Scholar
  46. [46]
    L¨ ammerzahl, C. (1998). Class. Quant. Grav 14, 13.Google Scholar
  47. [47]
    Kostelecky, V. A., and Lane, C. D. (1999). Phys. Rev. D 60, 116010.Google Scholar
  48. [48]
    Bluhm, R., Kostelecky, V. A., Lane, C. D., and Russell, N. (2003). hep-ph/0306190.Google Scholar
  49. [49]
    M¨ uller, H., Herrmann, S., Saenz, A., Peters, A., and L¨ ammerzahl, C. (2003). Phys. Rev. D 68, 116006.Google Scholar
  50. [50]
    Haugan, M. P., and L¨ ammerzahl, C. (2000). Ann. Phys. (Leipzig), 9(Special Issue SI), 119.Google Scholar
  51. [51]
    L¨ ammerzahl, C., Macias, A., and M¨ uller, H. (in preparation). Charge Non-Conservation: A General Theoretical Frame.Google Scholar
  52. [52]
    Marion, H., Pereira Dos Santos, F., Abgrall, M., Zhang, S., Sortas, Y., Bize, S., Maksimovic, I., Calonico, D., Gr¨ unert, J., Mandache, C., Lemonde, P., Santarelli, G., Laurent, Ph., Clairon, A., and Salomon, C. (2003). Phys. Rev. Lett 90, 150801.Google Scholar
  53. [53]
    Linet, B., and Teyssandier, P. (2002). Phys. Rev. D 66, 024045.Google Scholar
  54. [54]
    L¨ ammerzahl, C., Ahlers, G., Ashby, N., Barmatz, M., Biermann, P. L., Dittus, H., Dohm, V., Duncan, R., Gibble, K., Lipa, J., Lockerbie, N. A., Mulders, N., and Salomon, C. (2004). Gen. Rel. Grav 36, 615.Google Scholar
  55. [55]
    Braxmaier, C., M¨ uller, H., Pradl, O., Mlynek, J., Peters, A., and Schiller, S. (2002). Phys. Rev. Lett 88, 010401.Google Scholar
  56. [56]
    Misner, C. W., Thorne, K., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco.Google Scholar
  57. [57]
    Ciufolini, I., and Wheeler, J. A. (1995). Gravitation and Inertia, Princeton University Press, Princeton.Google Scholar
  58. [58]
    Damour, T., Piazza, F., and Veneziano, G. (2002). Phys.Rev. D66, 046007.Google Scholar
  59. [59]
    Thirring, H., and Lense, J. (1918). Phys. Z 19, 156.Google Scholar
  60. [60]
    Schiff, L. I. (1960). Phys. Rev. Lett. 4, 215.Google Scholar
  61. [61]
    Everitt, C. W. F., Buchman, S., DeBra, D. B., Keiser, G. M., Lockhart, J. M., Muhlfelder, B., Parkinson, B. W., Turneaure, J. P., and other members of the Gravity Probe B team. (2001). In Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space,C. L¨ ammerzahl, C. W. F. Everitt, and F. W. Hehl (Eds.), Springer-Verlag, Berlin, p. 52.Google Scholar
  62. [62]
    Ciufolini, I. (2004). Gen. Rel. Grav 36, 2257.Google Scholar
  63. [63]
    Ciufolini, I., Pavlis, E., Chieppa, F., Fernandes-Vieira, E., and P´ erez-Mercader, J. (1998). Science, 279, 2100.Google Scholar
  64. [64]
    Iorio, L., Lucchesi, D. M., and Ciufolini, I. (2002). Class. Quant. Grav 19, 4311.Google Scholar
  65. [65]
    Einstein, A. (1915). Sitzber. Preuss. Akad. Wiss. Berlin 831.Google Scholar
  66. [66]
    Lucchesi, D. (2002). Plan. Space Sci 50, 1067.Google Scholar
  67. [67]
    Rutman, J. (1978). Proc. IEEE.Google Scholar
  68. [68]
    Landau, L. D., and Lifschitz, E. M. (1975). Lehrbuch der theoretischen Physik, Vol. 7: Elas-tizit ¨ atstheorie. Akademie-Verlag, Berlin.Google Scholar
  69. [69]
    Lurje, A. I. (1993). R¨ aumliche Probleme der Elastizit¨ atstheorie, Akademie-Verlag, Berlin.Google Scholar
  70. [70]
    M¨ uller, H., Herrmann, S., Schuldt, T., Scholz, M., Kovalchuk, E., and Peters, A. (2003). Opt. Lett 28, 2186.Google Scholar
  71. [71]
    M¨ uller, H., Herrmann, S., Braxmaier, A., Schiller, S., and Peters, A. (2003). Appl. Phys. B 77, 719.Google Scholar
  72. [72]
    Jornod, A., Goujon, D., Gritti, D., and bernier, L. G. (2003). The 35 kg Space Active Hydrogen Maser (SHM-35) for ACES.Google Scholar
  73. [73]
    Prestage, J. D., Chung, S., Burt, E., Maleki, L., and Tjoelker, R. L. (2001). Proceedings of the 2001 IEEE International Frequency Control Symposium.Google Scholar
  74. [74]
    Cundiff, S. T., Ye, J., and Hall, J. L. (2001). Rev. Sci. Instr 72, 3749.Google Scholar
  75. [75]
    Touboul, P. (2001). In Gyroscopes, Clock, Interferometers, ...: Testing Relativistic Gravity in Space, volume LNP 562, C. L¨ ammerzahl, C. W. F. Everitt, and F. W. Hehl (Eds.), Springer, Berlin, p. 274.Google Scholar
  76. [76]
    Ciufolini, I., etal.(1998). LARES Phase-A Study,Rome.Google Scholar
  77. [77]
    Samain, E., and Dalla, R. (2003). Time Transfer by Laser Link T2L2: Micro-Satellite-Galil´ eo, 2003, Observatoire CÔte Azur.Google Scholar
  78. [78]
    Schleicher, A. (2002). Technical Report, OPT-DFC-TN-ZAR-002, ZARM.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • C. Lämmerzahl
    • 1
  • I. Ciufolini
    • 2
  • H. Dittus
    • 1
  • L. Iorio
    • 3
  • H. Müller
    • 4
  • A. Peters
    • 4
  • E. Samain
    • 5
  • S. Scheithauer
    • 1
  • S. Schiller
    • 6
  1. 1.ZARMUniversity BremenBremenGermany
  2. 2.Dipartimento di Ingegneria dell' Innovazione dell' Università di Lecce and INFN Sezione di LecceLecceItaly
  3. 3.Dipartimento di Fisica dell' Università di BariBariItaly
  4. 4.Institute for PhysicsHumboldt UniversityBerlinGermany
  5. 5.Observatoire de la Côte AzurCaussolsFrance
  6. 6.Institut für ExperimentalphysikHeinrich–Heine–Universität DüsseldorfDüsseldorfGermany

Personalised recommendations