Advertisement

General Relativity and Gravitation

, Volume 36, Issue 10, pp 2331–2339 | Cite as

Equivalence Principle Measurements

  • T. J. Sumner
Article

Abstract

Over the centuries there have been many experimental tests of the “universality of free-fall.” To date, these measurements have established the equivalence between inertial and gravitational mass to high precision, justifying its use as a foundation stone of general relativity by Einstein. There is a surprising richness in the variety of techniques and choice of test bodies which have been used so far, and a brief review is presented. However, future space experiments promise much better precision in this measurement and STEP is presented in some detail as one of a number of such missions. Using pairs of concentric free-falling proof-masses, STEP will be able to test the Equivalence Principle (EP) to a sensitivity at least five orders of magnitude better than currently achievable on ground. The EP is a founding principle of general relativity and STEP is the most sensitive experiment of this type planned so far, aiming at 1 part in 1018.

STEP universality of free fall equivalence principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    Adelberger, E. G. (2001). Class. Quant. Grav. 18, 2397.Google Scholar
  2. [2]
    Smith, G.L., et al. (1999). Phys. Rev. D 61, 022001.Google Scholar
  3. [3]
    Bantel, M. K., and Newman, R. D. (2000). Class. Quant. Grav. 17, 2313.Google Scholar
  4. [4]
    Vodel, W., Nietzsche, S., Neubert, R., and Dittus, H. (2002). Physica C 372-376, 154.Google Scholar
  5. [5]
    Iafolla, V., Nozzoli, S., Lorenzini, E. C., Shapiro, I. I., and Milyukov, V. (2000). Class. Quant. Grav. 17, 2327.Google Scholar
  6. [6]
    Nixon, G., Phillips, J. D., and Reasenberg, R. D. (2001). AAS Meeting 199, #139.03.Google Scholar
  7. [7]
    Bertolami, O., and Nunes, F. M. (2002). Ultracold neutrons, quantum effects of gravity and the Weak Equivalence Principle, hep-ph/0204284.Google Scholar
  8. [8]
    Luo, J., Nie, Y. X., Zhang, Y. Z., and Zhou, Z. B. (2002). Phys. Rev. D 65, 042005.Google Scholar
  9. [9]
    Popa, L. A., Burigana, C., and Mandolesi, N. (2002). Testing the principle of equivalence with Planck surveyor, astro-ph/0209497.Google Scholar
  10. [10]
    Huber, F. M., Messerschmid, E. W., and Smith, G. A. (2001). Class. Quant. Grav. 18, 2457.Google Scholar
  11. [11]
    Moffat, J. W., and Gillies, G. T. (2002). Satellite E¨ otv¨ os Test of the Weak Equivalence Principle for Zero-point Vacuum Energy, N. J. Phys. 4, 92.Google Scholar
  12. [12]
    Pradels, G., and Touboul, P. (2003). Class. Quant. Grav. 20, 2677.Google Scholar
  13. [13]
    Nobili, A. M., Bramanti, D., Comandi, G. L., Toncelli, R., and Polacco, E. (2003). N. Astrono. 8, 371.Google Scholar
  14. [14]
    Worden, P. W. (1996). STEP. Proceedings of 7th Marcel Grossmann Meeting on General Rela-tivity, World Scientific, Singapore pp. 1569-1573.Google Scholar
  15. [15]
    Damour, T., and Polyakov, A. M. (1994). Nucl. Phys. B 423, 532. See also Damour, T., et al., gr-qc/0204094Google Scholar
  16. [16]
    Blaser, J.-P. (2001). Class. Quant. Grav. 18, 13.Google Scholar
  17. [17]
    Sumner, T. J., and Touboul, P. (1993). Proc. STEP Symp., PISA ESA WPP-115, 274-281. See also Sumner, T. J., and Jafry, Y. (2000). Adv. Space Res. 25, 1219-1223.Google Scholar
  18. [18]
    Lockerbie, N. A., Veryaskin, A. V., and Xu, X. (1993). Class. Quant. Grav. 10, 2419-2430. See also Lockerbie, N. A., et al. (1994). Class. Quant. Grav. 11, 1575-1590.Google Scholar
  19. [19]
    Sanders, A. J., et al. (2000). Class. Quant. Grav. 17, 2331.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • T. J. Sumner
    • 1
  1. 1.Department of PhysicsImperial College LondonLondonUnited Kingdom

Personalised recommendations