Advertisement

General Relativity and Gravitation

, Volume 36, Issue 10, pp 2197–2221 | Cite as

HYPER: A Satellite Mission in Fundamental Physics Based on High Precision Atom Interferometry

  • C. Jentsch
  • T. Müller
  • E. M. Rasel
  • W. Ertmer
Article

Abstract

The article presents the HYPER project, a proposal for a satellite mission on precision matter-wave interferometry. For the mission several scientific objectives are under investigation, for which atom interferometers proved on ground to be a true complementary and competitive alternative for classical concepts: The application of atom interferometers as gyroscopes, the measurement of the gravitational acceleration (including tests of the universality of the free fall of atoms) and the precise determination of the fine-structure constant. The paper focuses on the use of cold-atom gyroscopes to map the Lense-Thirring effect close by the Earth and reports on results of recent feasibility studies of the European Space Agency. HYPER requires new concepts of compact, high-resolution matter-wave gyroscopes, which are better adapted to the use in satellite based experiments. The article will give a concise overview of the status and strategies in the field.

Gyroscope universality of free fall fine-structure constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    Colella, R., Overhauser, A. W., and Werner, S. A. (1975). Phys. Rev. Lett. 34, 1472.Google Scholar
  2. [2]
    Werner, S. A., Staudemann, J.-L., and Colella, R. (1979). Phys. Rev. Lett. 42, 317.Google Scholar
  3. [3]
    Berman, P. (ed.) (1997). Atom Interferometry, Academic Press, New York.Google Scholar
  4. [4]
    Adams, C. S., Carnal, O., and Mlynek, J. (1994). Adv. At. Mol. Phys. 34, 1.Google Scholar
  5. [5]
    Hackerm¨uller, L., Hornberger, K., Brezger, B., Zeilinger, A., and Arndt, M. (2004). Nature 427, 711.Google Scholar
  6. [6]
    Bouwmeester, D., Ekert, A., and Zeilinger, A. (2000). Physics of Quantum Information, Springer-Verlag, Berlin.Google Scholar
  7. [7]
    Courtillot, I., Quessada, A., Kovacich, R. P., Brusch, A., Kolker, D., Zondy, J.-J., Rovera, G. D., and Lemonde, P. (2003). Phys. Rev. A 68, 30501R.Google Scholar
  8. [8]
    Wicht, A., Hensley, J., Sarajlic, E., and Chu, S. (2002). Phys. Scripta 102, 82.Google Scholar
  9. [9]
    Peters, A., Chung, K. Y., and Chu, S. (2001). Metrologia 38, 25.Google Scholar
  10. [10]
    Snadden, M. J., McGuirk, J. M., Bouyer, P., Haritos, K. G., and Kasevich, M. A. (1998). Phys. Rev. Lett. 81, 971.Google Scholar
  11. [11]
    Gustavson, T. L., Bouyer, P., and Kasevich, M. A. (1997). Phys. Rev. Lett. 78, 2046.Google Scholar
  12. [12]
    L¨ammerzahl, C., and Dittus, H. (2002). Ann. Physik (Leipzig) 11,95.Google Scholar
  13. [13]
    L¨ammerzahl, C., Ciufolini, I., Dittus, H., Iorio, L., M¨uller, H., Peters, A. Samain, E., Scheithauer, S., and Schiller, S. (2004). Gen. Rel. Grav. 36, 2373.Google Scholar
  14. [14]
    Laurent, P., et al., (1996). Towards a Space Clock Using Cold Cesium Atoms: The Pharao Project, Proceedings of the 20th Biennal Conference on Prec. Electr. Meas., New York, p. 178.Google Scholar
  15. [15]
    Lemonde, P. (1998). Microgra. Sci. Technol. XI/2, 85.Google Scholar
  16. [16]
    Ashby, N. (2002). In PARCS: Primary Atomic Reference Clock in Space, Proceedings of the 2nd Meeting on CPT and Lorentz Symmetry, V. A. Kostelecky (Ed.), World Scientific, Singapore, p. 26.Google Scholar
  17. [17]
    Bingham, R., et al., (2000). ESA-SCI 10.Google Scholar
  18. [18]
    HYPER technical documentation, see http://sci.esa.int/science-e/www/object/index.cfm? fobjectid =33280.Google Scholar
  19. [19]
    L¨ammerzahl, C., and Everitt, C. W. F., and Hehl, F. W. (2001). Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, Lecture Notes in Physics 562, Springer-Verlag, Berlin.Google Scholar
  20. [20]
    Lense, J., and Thirring, H. (1918). Phy s. Z. 19 Google Scholar
  21. [21]
    Schiff, L. I. (1960). Phys. Rev. Lett. 4, 215.Google Scholar
  22. [22]
    Pugh, G. E. (1959). Proposal for a Satellite Test of the Coriolis Prediction of General Relativity, Department of Defense, Washington, DC.Google Scholar
  23. [23]
    Will, C. M. (1993). Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge, UK.Google Scholar
  24. [24]
    Shapiro, S. S., Davis, J. L., Lebach, D. E., and Gregory, J. S. (2004). Phys. Rev. Lett. 92(12)}, 121101.Google Scholar
  25. [25]
    Ciufolini, I., Dominici, D., and Lusanna, L. (2003). In Frame-Dragging and Gravito-Magnetism: Theory and Experiment, Proceedings of the John Hopkins Workshop on Current Problems in Particle Theory, 2001, World Scientific, Singapore, pp. 99-139.Google Scholar
  26. [26]
    Everitt, C. W. F., Buchman, S., DeBra, D. B., Kaiser, G. M., Lockhart, J. M., Muhlfelder, B., Parkinson, B. W., Turneaure, J. P., and other members of the Gravity Probe B Team, (2001), In Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space,C. L¨ammerzahl, C. W. F. Everitt, and F. W. Hehl (Eds.), Springer-Verlag, Berlin, p. 52.Google Scholar
  27. [27]
    Miller, M. C. (2002). Astrophys. J. 581, 438.Google Scholar
  28. [28]
    Markovic, D., and Lamb, F. K. (1998). Astrophys. J. 507, 316Google Scholar
  29. [29]
    Angonin-Willaime, M.-C., Ovido, X., and Tourrenc, P. (2004). Gen. Rel. Grav. 36, 411.Google Scholar
  30. [30]
    Bord´e, C. J. (2004). Gen. Rel. Grav. 36, 475.Google Scholar
  31. [31]
    Marzlin, K.-P., and Audretsch, J. (1996). Phys.Rev. A53, 312.Google Scholar
  32. [32]
    Sagnac, M. G. (1913). Compt. Rend. des Sc. de l'Acad. d. Sc. 157, 1103.Google Scholar
  33. [33]
    see http://www.esa.int/export/esaLP/ESA1MK1VMOC goce 2.html.Google Scholar
  34. [34]
    Yurke, B., McCall, S. L., and Klauder, J. R. (1986). Phys. Rev. A 33, 4033.Google Scholar
  35. [35]
    Quessada, A., Kovacich, R. P., Courtillot, I., Clairon, A., Santarelli, G., and Lemonde, P. (2003). J. Opt. B: Quant. Semiclass. Opt. 5,S1.Google Scholar
  36. [36]
    Clauser, J. F. (1988). Physica B 151, 262.Google Scholar
  37. [37]
    Keith, D. W., Ekstrom, C. R., Turchette, Q. A., and Pritchard, D. E. (1991). Phys. Rev. Lett. 66, 2693.Google Scholar
  38. [38]
    Adams, C. S., Siegel, M., and Mlynek, J. (1994). Phys. Rep. 240, 143.Google Scholar
  39. [39]
    Moskowitz, P. E., Gould, P. L., Atlas, S. R., and Pritchard, D. E. (1983). Phys. Rev. Lett. 51, 370.Google Scholar
  40. [40]
    Rasel, E. M., Oberthaler, M. K., Batelaan, H., Schmiedmayer, J., and Zeilinger, A. (1995). Phys. Rev. Lett. 75, 2633.Google Scholar
  41. [41]
    Bordé, C. J. (1989). Phys. Lett. A 140, 10.Google Scholar
  42. [42]
    Kasevich, M. A., and Chu, S. (1991). Phys. Rev. Lett. 67, 181.Google Scholar
  43. [43]
    Bordé, C. J. (1991). In Laser Spectroscopy X, World Scientific, Singapore, p. 239.Google Scholar
  44. [44]
    Baklanov, Y. V., Dubetsky, B. Y., and Chebotayev, V. P. (1976). Appl. Phys. 9, 171.Google Scholar
  45. [45]
    Bergquist, J. C., Lee, S. A., and Hall, J. L. (1977). Phys. Rev. Lett. 38, 159.Google Scholar
  46. [46]
    Sengstock, K., Sterr, U., Hennig, G., Bettermann, D., M¨uller, J. H., and Ertmer, W. (1993). Opt. Commun. 103, 73.Google Scholar
  47. [47]
    Riehle, F., Kisters, T., Witte, A., Helmcke, J., and Bordé, C. J. (1991). Phys. Rev. Lett. 67, 177.Google Scholar
  48. [48]
    Weiss, D. S., Young, B. C., and Chu, S. (1993). Phys. Rev. Lett. 70, 2706.Google Scholar
  49. [49]
    Gustavson, T. L. (2000). Precision Rotation Sensing Using Atom Interferometry, PhD Thesis.Google Scholar
  50. [50]
    Yver-Leduc, F., Cheinet, P., Fils, J., Clairon, A., Dimarcq, N. Holleville, D., Bouyer, P., and Landragin, A. (2003). J. Opt. B 5, 136.Google Scholar
  51. [51]
    Cheinet, P., Pereira dos Santos, F., Clairon, A., Dimarcq, N., Holleville, D., and Landragin, A. (in press). J. Phys.Google Scholar
  52. [52]
    Stuhler, J., Fattori, M., Petelski, T., and Tino, G. M. (2003). J. Opt. B 5, 75.Google Scholar
  53. [53]
    Schoser, J., Batär, A., L¨ow, R., Schweikhard, V., Grabowski, A., Ovchinnikov, Y. B., and Pfau, T. (2002). Phys.Rev. A66, 23410.Google Scholar
  54. [54]
    Treutlein, P., Chung, K. Y., and Chu, S. (2001). Phys. Rev. A 63, 051401.Google Scholar
  55. [55]
    Katori, H. (2002). In Proceedings 6th Symposium Frequency Standards and Metrology,P. Gill (Ed.), World Scientific, Singapore.Google Scholar
  56. [56]
    Bennet, G. W., et al., (2004). Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm.preprintarXiv:hep-ex/0401008 Google Scholar
  57. [57]
    Gustavson, T. L., Landragin, A., and Kasevich, M. A. (2000). Class. Quant. Grav. 17, 2385.Google Scholar
  58. [58]
    H¨ansch, T., and Shawlow, A. (1975). Opt. Commun. 13, 68.Google Scholar
  59. [59]
    Tourrenc, P. private communication.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • C. Jentsch
    • 1
  • T. Müller
    • 1
  • E. M. Rasel
    • 1
  • W. Ertmer
    • 1
  1. 1.Institute of Quantum OpticsUniversity of HannoverHannoverGermany

Personalised recommendations