Advertisement

General Relativity and Gravitation

, Volume 36, Issue 6, pp 1415–1422 | Cite as

Letter: A Solution of the Weyl–Lanczos Equations for the Schwarzschild Space-Time

  • Peter O'Donnell
Article

Abstract

The spin coefficient form of the Weyl–Lanczos equations is analysed for the Schwarzschild space-time. The solution obtained yields an alternative form of Lanczos coefficients to the one currently known for this particular metric.

Weyl–Lanczos equations Schwarzschild space-time Lanczos coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lan czos, C. (1962). Rev. Mod. Phys. 34, 379.Google Scholar
  2. [2]
    Takeno, H. (1964). Tensor, N.S. 15, 103.Google Scholar
  3. [3]
    Bampi, F. and Caviglia, G. (1983). Gen. Rel. Grav. 15, 375.Google Scholar
  4. [4]
    Illge, R. (1988). Gen. Rel. Grav. 20, 551.Google Scholar
  5. [5]
    Edgar, S. B. and Höglund, A. (2000). Gen. Rel. Grav. 32, 2307.Google Scholar
  6. [6]
    Maher, W. F. and Zund, J. D. (1968). Nuovo Cim. A 57, 638.Google Scholar
  7. [7]
    Zund, J. D. (1975). Ann. Mat. Pure. Appl. 104, 239.Google Scholar
  8. [8]
    Ares de Parga, G., Lopez-Bonilla, J. L., Chavoya, O., and Chassin, T. (1989). Rev. Mex. Fis. 35, 393.Google Scholar
  9. [9]
    Lopez-Bonilla, J. L., Morales, J., Navarrete, D., and Rosales, M. (1993). Class. Quant. Grav. 10, 2153.Google Scholar
  10. [10]
    Dolan, P. and Kim, C. W. (1994). Proc. R. Soc. A 447, 577.Google Scholar
  11. [11]
    O'Donnell, P. (2003). Introduction to 2-Spinors in General Relativity, World Scientific, Singapore.Google Scholar
  12. [12]
    Gaftoi, V., Morales, J., Ovando, G., and Peña, J. J. (1998). Nuovo Cim. B 113, 1297.Google Scholar
  13. [13]
    Lopez-Bonilla, J. L., Ovando, G., and Peña, J. J. (1999). Found. Phys. Lett. 12, 401.Google Scholar
  14. [14]
    Lopez-Bonilla, J. L. and Ovando, G. (1999). Gen. Rel. Grav. 31, 1071.Google Scholar
  15. [15]
    Penrose, R. and Rindler, W. (1984). Spinors and Space-Time, Vol. 1, Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  16. [16]
    Anderson, F. and Edgar, S. B. (2000). J. Math. Phys. 41, 2990.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Peter O'Donnell
    • 1
  1. 1.Department of MathematicsAnglia Polytechnic UniversityCambridgeUnited Kingdom

Personalised recommendations