General Relativity and Gravitation

, Volume 36, Issue 6, pp 1335–1360 | Cite as

Extra Force from an Extra Dimension: Comparison Between Brane Theory, Space-Time-Matter Theory, and Other Approaches

  • J. Ponce de Leon
Article

Abstract

We investigate the question of how an observer in 4D perceives the five-dimensional geodesic motion. We consider the interpretation of null and non-null bulk geodesics in the context of brane theory, space-time-matter theory (STM) and other non-compact approaches. We develop a “frame-invariant” formalism that allows the computation of the rest mass and its variation as observed in 4D. We find the appropriate expression for the four-acceleration and thus obtain the extra force observed in 4D. Our formulae extend and generalize all previous results in the literature. An important result here is that the extra force in brane-world models with Z2-symmetry is continuous and well defined across the brane. This is because the momentum component along the extra dimension is discontinuous across the brane, which effectively compensates the discontinuity of the extrinsic curvature. We show that brane theory and STM produce identical interpretation of the bulk geodesic motion. This holds for null and non-null bulk geodesics. Thus, experiments with test particles are unable to distinguish whether our universe is described by the brane world scenario or by STM. However, they do discriminate between the brane/STM scenario and other non-compact approaches. Among them the canonical and embedding approaches, which we examine in detail here.

Kaluza-Klein theory general relativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kaluza, T. (1921). Sitz.-ber. Preuss. Akad. Wiss. 33, 966.Google Scholar
  2. [2]
    Klein, O. (1926). Z. Phys. 37, 895.Google Scholar
  3. [3]
    Collins, P., Martin, A., and Squires, E. (1989). Particle Physics and Cosmology, Chapter 13, Wiley, New York.Google Scholar
  4. [4]
    Arkani-HamVol., N., Dimipoulos, S., and Dvali, G. (1998). Phys. Lett. B Vol. 429, 263(hep-ph/9803315).Google Scholar
  5. [5]
    Arkani-HamVol., N., Dimipoulos, S., and Dvali, G. (1999). Phys. Rev. D 59, 086004(hep-ph/9807344).Google Scholar
  6. [6]
    Antoniadis, I., Arkani-HamVol., N., Dimipoulos, S., and Dvali, G. (1998). Phys. Lett. B 436, 257(hep-ph/9804398).Google Scholar
  7. [7]
    Randall, L. and Sundrum, R. (1998). Mod. Phys. Lett. A 13, 2807(hep-ph/9905221).Google Scholar
  8. [8]
    Randall, L. and Sundrum, R. (1999). Phys. Rev. Lett. 83, 4690(hp-th/9906064).Google Scholar
  9. [9]
    Ponce de Leon, J. (1988). Gen. Rel. Grav. 20, 539.Google Scholar
  10. [10]
    Wesson, P. S. and Ponce de Leon, J. (1992). J. Math. Phys. bf 33, 3883.Google Scholar
  11. [11]
    Ponce de Leon, L. and Wesson, P. S. (1993). J. Math. Phys. 34, 4080.Google Scholar
  12. [12]
    Wesson, P. S. (1999). Space-Time-Matter, Chapter 12, World Scientific, Singapore.Google Scholar
  13. [13]
    Ponce de Leon, J. (2002). Int. J. Mod. Phys. D 11, 1355(gr-qc/0105120).Google Scholar
  14. [14]
    Campbell, J. E. (1926). A Course of Differential Goemetry, Clarendon, Oxford.Google Scholar
  15. [15]
    Rippl, S., Romero, C., and Tavakol, R. (1995). Class. Quant. Grav. 12, 2411(gr-qc/9511016).Google Scholar
  16. [16]
    Romero, C., Tavakol, R., and Zalaletdinov, R. (1996). Gen. Rel. Grav. 28, 365.Google Scholar
  17. [17]
    Lidsey, J. E., Romero, C., Tavakol, R., and Rippl, S. (1997). Class. Quant. Grav. 14, 865(gr-qc/9907040).Google Scholar
  18. [18]
    Mashhoon, B., Wesson, P. S., and Liu, H. (1998). Gen. Rel. Grav. 30, 555.Google Scholar
  19. [19]
    Wesson, P. S., Mashhoon, B., Liu, H., and Sajko, W. N. (1999). Phys. Lett. B 456, 34.Google Scholar
  20. [20]
    Youm, D. (2000). Phys. Rev. D 62, 084002(hep-th/0004144).Google Scholar
  21. [21]
    Youm, D. (2001). Mod. Phys. Lett. A 16, 2371(hep-th/0110013).Google Scholar
  22. [22]
    Ponce de Leon, J. (2001). Phys. Lett. B 523, 311(gr-qc/0110063).Google Scholar
  23. [23]
    Seahra, S. S. (2002). Phys. Rev. D 65, 124004(gr-qc/0204032).Google Scholar
  24. [24]
    Seahra, S. S. and Wesson, P. S. (2001). Gen. Rel. Grav. 33, 1731(gr-qc/0105041).Google Scholar
  25. [25]
    Mashhoon, B., Liu, H., and Wesson, P. S. (1994). Phys. Lett. B 331, 305.Google Scholar
  26. [26]
    Liu, H. and Mashhoon, B. (2000). Phys. Lett. A 272, 26(gr-qc/0005079).Google Scholar
  27. [27]
    Billyard, A. P. and Sajko, W. N. (2001). Gen. Rel. Grav. 33, 1929(gr-qc/0105074).Google Scholar
  28. [28]
    Ponce de Leon, J. (2003). Int. J. Mod. Phys. D 12, 757(gr-qc/0209013).Google Scholar
  29. [29]
    Dahia, F., Monte, E. M., and Romero, C. (2003). Mod. Phys. Lett. A 18, 1773(gr-qc/0303044).Google Scholar
  30. [30]
    Ponce de Leon, J. (2003). Class. Quant. Grav. 20, 5321(gr-qc/0305041).Google Scholar
  31. [31]
    Ponce de Leon, J. (2001). Mod. Phys. Lett. A 16, 2291(gr-qc/0111011).Google Scholar
  32. [32]
    Landau, L. and Lifshitz, E. (1975). The Classical Theory of Fields, 4th Vol. edition, Chapters 10 and 12, Pergamon, New York.Google Scholar
  33. [33]
    Ponce de Leon, J. (2002). Grav. Cosmol. 8, 272(gr-qc/0104008).Google Scholar
  34. [34]
    Ponce de Leon, J. (2002). Mod. Phys. Lett. A 17, 2425(gr-qc/0207001).Google Scholar
  35. [35]
    Shiromizu, T., MaVol., K.-I., and Sasaki, M. (2000). Phys. Rev. D 62, 02412(gr-qc/9910076).Google Scholar
  36. [36]
    Maartens, R. (2000). Phys. Rev. D 62, 084023(hep-th/0004166).Google Scholar
  37. [37]
    Chamblin, A., Hawking, S. W., Reall, H. S. (2000). Phys. Rev. D 61, 065007(hep-th/9909205).Google Scholar
  38. [38]
    Chamblin, A. (2001). Class. Quant. Grav. 18, L-17(hep-th/0011128).Google Scholar
  39. [39]
    Bruni, M., Germani, C., and Maartens, R. (2001). Phys. Rev. Lett. 87, 23130(gr-qc/0108013).Google Scholar
  40. [40]
    Maartens, R. (2001). (gr-qc/0101059).Google Scholar
  41. [41]
    Germani, C. and Maartens, R. (2001). Phys. Rev. D 64, 124010(hep-th/0107011).Google Scholar
  42. [42]
    Dadhich, N. and Gosh, S. G. (2001). Phys. Lett. B 518, 1(hep-th/0101019).Google Scholar
  43. [43]
    Govender, M. and Dadhich, N. (2002). Phys. Lett. B 538, 233(hep-th/0109086).Google Scholar
  44. [44]
    Deruelle, N. and Katz, J. (2002). Phys. Rev. D 64, 083515(gr-qc/0104007).Google Scholar
  45. [45]
    Davis, A. C., Vernon, I., Davis, S. C., and Perkins, W. B. (2001). Phys. Lett. B 504, 254(hep-ph/0008132).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • J. Ponce de Leon
    • 1
  1. 1.Laboratory of Theoretical Physics, Department of PhysicsUniversity of Puerto RicoSan JuanPuerto Rico

Personalised recommendations