General Relativity and Gravitation

, Volume 36, Issue 6, pp 1321–1333 | Cite as

The Impact of the New Earth Gravity Models on the Measurement of the Lense–Thirring Effect

  • Lorenzo Iorio
  • Alberto Morea


We examine how the new forthcoming Earth gravity models from the CHAMP and, especially, GRACE missions could improve the measurement of the general relativistic Lense–Thirring effect according to the various kinds of observables which could be adopted. In a very preliminary way, we use the first recently released EIGEN2 CHAMP–only and GGM01C GRACE–based Earth gravity models in order to assess the impact of the mismodelling in the even zonal harmonic coefficients of geopotential which represents one of the major sources of systematic errors in this kind of measurement. However, discretion is advised on evaluating the reliability of these results because the Earth gravity models used here, especially EIGEN2, are still very preliminary and more extensive calibration tests must be performed. According to the GGM01C model, the systematic error due to the unmodelled even zonal harmonics of geopotential amounts to 2% for the combination of the nodes of LAGEOS and LAGEOS II and the Perigee of LAGEOS II used up to now by Ciufolini and coworkers in the currently performed LAGEOS-LAGEOS II Lense-Thirring experiment, and to 14% for a combination explicitly presented here which involves the nodes only of LAGEOS and LAGEOS II.

Lense-Thirring effect LAGEOS satellites new earth gravity models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lense, J., Thirring, H. 1918Phys. Z.19156163Google Scholar
  2. [2]
    Ciufolini, I. and Wheeler, J. A. (1995). Gravitation and Inertia, Princeton University Press, New York, 498pp.Google Scholar
  3. [3]
    Everitt, C. W. F. and other members of the Gravity Probe B team (2001). In Gyros, Clocks, Interferometers...:Testing Relativistic Gravity in Space, C. Lämmerzahl, C. W. F. Everitt, and F. W. Hehl (Eds.), Springer, Berlin, pp. 52-82. Lecture Note in Physics 562).Google Scholar
  4. [4]
    Ciufolini, I. (1996). Nuovo Cimento A 109, 1709-1720.Google Scholar
  5. [5]
    Ciufolini, I. (1986). Phys. Rev. Lett. 56, 278-281.Google Scholar
  6. [6]
    Iorio, L., Lucchesi, D., and Ciufolini, I. (2002). Class. Quant. Grav. 19, 4311-4325.Google Scholar
  7. [7]
    Iorio, L. (2003a). Gen. Relat. Grav. 35, 1263-1272.Google Scholar
  8. [8]
    Ciufolini, I., Pavlis, E. C., Chieppa, F., Fernandes-Vieira, E., and Pérez-Mercader, J. (1998). Science 279, 2100-2103.Google Scholar
  9. [9]
    Ciufolini, I. (2002). Proceedings of the Physics in Collision Conference, Stanford, California, June 20–22, 2002, Preprint gr-qc/0209109.Google Scholar
  10. [10]
    Ries, J. C., Eanes, R. J., and Tapley, B. D. (2003). In Nonlinear Gravitodynamics. The Lense-Thirring Effect, R. Ruffini and C. Sigismondi (Eds.), World Scientific, Singapore, pp. 201-211.Google Scholar
  11. [11]
    Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H., Wang, Y. M., Williamson, R. G., Pavlis, E. C., Rapp, R. H., and Olson, T. R. (1998). The Development of the Joint NASA GSFC and the National Imagery Mapping Agency (NIMA) Geopotential Model EGM96 NASA/TP-1998-206861.Google Scholar
  12. [12]
    Iorio, L. (2003b). Celest. Mech. 86, 277-294.Google Scholar
  13. [13]
    Gruber, Th., Bode, A., Reigber, Ch., and Schwintzer, P. (2000). Geophys. Res. Lett. 27, 4005-4008.Google Scholar
  14. [14]
    Klokočnik, J., Reigber, Ch., Schwintzer, P., Wagner, C. A., and Kostelecký, J. (2002). J. Geodesy 76, 189-198.Google Scholar
  15. [15]
    Lucchesi, D. (2001). Planet Space Sci. 49, 447-463.Google Scholar
  16. [16]
    Lucchesi, D. (2002). Planet Space Sci., 50, 1067-1100.Google Scholar
  17. [17]
    Vespe, F. (1999). Adv. Space Res. 23, 699-703.Google Scholar
  18. [18]
    Pavlis, E. (2000). In Recent Developments in General Relativity, R. Cianci, R. Collina, M. Francaviglia and P. Fré (Eds.), Springer, Milan, Italy, pp. 217-233.Google Scholar
  19. [19]
    Ries, J. C., Eanes, R. J., Tapley, B. D., and Peterson, G. E. (2002). Proceedings of the 13th International Laser Ranging Workshop, Washington, DC, October 7–11, 2002, Preprint Scholar
  20. [20]
    Reigber, Ch., Schwintzer, P., Neumayer, K.-H., Barthelmes, F., König, R., Förste, Ch., Balmino, G., Biancale, R., Lemoine, J.-M., Loyer, S., Bruinsma, S., Perosanz, F., and Fayard, T. (2003). Adv. Space Res. 31, 1883-1888.Google Scholar
  21. [21]
    Deleflie, F., Exertier, P., Métris, G., Berio, P., Laurain, O., Lemoine, J.-M. and Biancale, R. (2003). Adv. Geosci. 1, 103-108.Google Scholar
  22. [22]
    Eanes, R. J. and Bettadpur, S. V. (1996). In Global Gravity Field and its Temporal Variations, R. H. Rapp, A. Cazenave, and R. S. Nerem (Eds.), Springer, New York, pp. 30-41, (IAG Symp. Ser. 116).Google Scholar
  23. [23]
    Lucchesi, D. (2003). Phys. Lett. A 318, 234-240.Google Scholar
  24. [24]
    Iorio, L. (2002). J. Geod. Soc. Jpn. 48, 13-20.Google Scholar
  25. [25]
    Iorio, L. (2002). Class. Quant. Grav. 19, 5473-5480.Google Scholar
  26. [26]
    Iorio, L. (2001). Celest. Mech. 79, 201-230.Google Scholar
  27. [27]
    Tapley, B. D., Chambers, D. P., Cheng, M. K., Kim, M. C., Poole, S., and Ries, J. C. (2000). Paper presented at 25th EGS General Assembly, Nice, France, April 2000.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Lorenzo Iorio
    • 1
  • Alberto Morea
    • 1
  1. 1.Dipartimento Interateneo di Fisica dell'Università di BariBariItaly

Personalised recommendations