General Relativity and Gravitation

, Volume 36, Issue 3, pp 615–649 | Cite as

Review: Experiments in Fundamental Physics Scheduled and in Development for the ISS

  • C. Lämmerzahl
  • G. Ahlers
  • N. Ashby
  • M. Barmatz
  • P. L. Biermann
  • H. Dittus
  • V. Dohm
  • R. Duncan
  • K. Gibble
  • J. Lipa
  • N. Lockerbie
  • N. Mulders
  • C. Salomon
Article

Abstract

This is a review of those experiments in the area of Fundamental Physics that are either approved by ESA and NASA, or are currently under development, which are to be performed in the microgravity environment of the International Space Station. These experiments cover the physics of liquid Helium (SUE, BEST, MISTE, DYNAMX, and EXACT), ultrastable atomic clocks (PHARAO, PARCS, RACE), ultrastable microwave resonators (SUMO), and particle detectors (AMS and EUSO). The scientific goals are to study more precisely the universality properties of liquid Helium under microgravity conditions, to establish better time standards and to test the universality of the gravitational red shift, to make more precise tests of the constancy of the speed of light, and to measure the particle content in space directly without disturbances from the Earth's inner atmosphere.

ISS microgravity Special Relativity General Relativity speed of light gravitational red shift renormalization group-theory liquid Helium high energy cosmic rays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Giulini, D., Kiefer, C., and LÅmmerzahl, C. (Eds.) (2003).Quantum Gravity—From Theory to Experimental Search, Springer Lecture Notes in Physics 631, Springer-Verlag, Berlin.Google Scholar
  2. 2.
    LÅmmerzahl, C., and Dittus, H. (2002). Ann. Phys. (Leipzig) 11, 95.Google Scholar
  3. 3.
    Amelino-Camelia, G. (2004). Gen. Rel. Grav. 36, 539.Google Scholar
  4. 4.
    Wilson, K. G., and Kogut, J. (1974). Phys. Rep. C 12, 76;Fisher, M. E. (1974). Rev. Mod. Phys. 46, 597.Google Scholar
  5. 5.
    Will, C. M. (1993). Theory and Experiment in Gravitational Physics, Revised Edition, Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  6. 6.
    Damour, T. (2000). In Gravitational Waves and Experimental Gravity, J. TrÃn Tanh VÃn, J. Dumarchez, S. Reynaud, C. Salomon, S. Thorsett, and J. Y. Vinet (Eds.), World Publishers, Hanoi, Vietnam.Google Scholar
  7. 7.
    Privman, V., Aharony, A., and Hohenberg, P. C. (1991). In Phase Transitions and Critical Phenomena, Vol. 14, C. Domb, and J. L. Lebowitz (Eds.), Academic Press, New York, p. 1.Google Scholar
  8. 8.
    Privman, V. (Ed.) (1990). Finite Size Scaling and Numerical Simulations in Statistical Systems, World Scientific, Singapore.Google Scholar
  9. 9.
    Dohm, V., and Chen, X. S. (in press). J. Low Temp. Phys.;Dohm, V. (1993). Phys. Scripta T 49, 46.Google Scholar
  10. 10.
    Gasparini, F. M., Kimball, M. O., and Moonay, K. P. (2001). J. Phys.: Condens. Matter 13, 4871.Google Scholar
  11. 11.
    Murphy, D., Genio, E., Ahlers, G., Liu, F., and Liu, Y. (2003). Phys. Rev. Lett. 90, 0s25301.Google Scholar
  12. 12.
    Haussmann, R., and Dohm, V. (1991). Phys. Rev. Lett. 67, 3404; Haussmann, R., and Dohm, V. (1992). Z. Phys. B 87, 229.Google Scholar
  13. 13.
    Haussmann, R., and Dohm, V. (1992). Phys. Rev. B 46, 6361; Dohm, V., and Haussmann, R. (1994). Physica B 197, 215.Google Scholar
  14. 14.
    Liu, F. C., and Ahlers, G. (1994). Physica (Amsterdam) 194B–196B, 597;Onuki, A. (1983). J. Low Temp. Phys. 50, 433.Google Scholar
  15. 15.
    Mansouri, R., and Sexl, R. U. (1977). Gen. Rel. Grav. 8, 497.Google Scholar
  16. 16.
    Lamoreaux, S. K., Jacobs, J. P., Heckel, B. R., Raab, F. J., and Fortson, E. N. (1986). Phys. Rev. Lett. 57, 3125-3128.Google Scholar
  17. 17.
    MÝller, H., Herrmann, S., Braxmaier, C., Schiller, S., and Peters, A. (2003). Phys. Rev. Lett. 91, 020401.Google Scholar
  18. 18.
    Wolf, P., Bize, S., Clairon, A., Luiten, A. L., Santarelli, G., and Tobar, M. E. (2003). Phys. Rev. Lett. 90, 1060402.Google Scholar
  19. 19.
    Kostelecky, V. A., and Mewes, M. (2002). Phys. Rev. D 66, 0056005.Google Scholar
  20. 20.
    Turneaure, J. P., Will, C. M., Farrel, B. F., Mattison, E. M., and Vessot, R. F. C. (1983). Phys. Rev. D 27, 1705.Google Scholar
  21. 21.
    Salomon, C., Dimarcq, N., Abgrall, M., Clairon, A., Laurent, P., Lemonde, P., Santarelli, G., Uhrich, P., Bernier, L. G., Busca, G., Jornod, A., Thomann, P., Samain, E., Wold, P., Gonzalez, F., Guillemot, Ph., Leon, S., Nouel, F., Sirmain, Ch., and Feltham, S. (2001). C. R. Acad. Sci. Paris 2 (SÉrie 4), 1313.Google Scholar
  22. 22.
    Bauch, A., and Weyers, S. (2002). Phys. Rev. D 65, 081101(R).Google Scholar
  23. 23.
    Gibble, K., and Chu, S. (1993). Phys. Rev. Lett. 70, 1771.Google Scholar
  24. 24.
    Fertig, C., and Gibble, K. (2000). Phys. Rev. Lett. 85, 1622.Google Scholar
  25. 25.
    Sortais, Y., Bize, S., Nicolas, C., Clairon, A., Salomon, C., and Williams, C. (2000). Phys. Rev. Lett. 85, 3117.Google Scholar
  26. 26.
    Legere, R., and Gibble, K. (1998). Phys. Rev. Lett. 81, 5780.Google Scholar
  27. 27.
    Bhattacharjee, P., and Sigl, G. (2000). Phys. Rep. 327, 109; Biermann, P. L., and Medina-Tanco, G. (in press). (astro-ph/0301299); Biermann, P. L., and Sigl, G. (2001). In Physics and Astrophysics of Ultra-High-Energy Cosmic Rays, Lecture Notes in Physics 576, M. Lemoine, and G. Sigl (Eds.), Springer-Verlag, Berlin. p. 1; Halzen, F. (2002). Int. J. Mod. Phys. A 17, 3432; Nagano, M., and Watson, A. A. (2000). Rev. Mod. Phys. 72, 689.Google Scholar
  28. 28.
    Amelino-Camelia, G., and Piran, T. (2003). Phys. Rev. D 64, 036005.Google Scholar
  29. 29.
    Graywall, D. S., and Ahlers, G. (1973). Phys. Rev. A 7, 2145.Google Scholar
  30. 30.
    Wegner, F. (1972). Phys. Rev. B 5, 4529.Google Scholar
  31. 31.
    Guida, R., and Zinn-Justin, J. (1998). J. Phys. A 31, 8103.Google Scholar
  32. 32.
    Zhong, F., Barmatz, M., and Hahn, I. (2003). Phys. Rev. E 67021106.Google Scholar
  33. 33.
    Haussmann, R. (1999). J. Low Temp. Phys. 114, 1.Google Scholar
  34. 34.
    Weichman, P., Prasad, A., Mukhopadhyay, R., and Miller, J. (1998). Phys. Rev. Lett. 80, 4923.Google Scholar
  35. 35.
    Moeur, W. A., Day, P. K., Liu, F. C., Boyd, S. T. P., Adriaans, M. J., and Duncan, R. V. (1997). Phys. Rev. Lett. 78, 2421.Google Scholar
  36. 36.
    Day, P., Moeur, W., McCready, S., Sergatskov, D., and Duncan, R. (1998). Phys. Rev. Lett. 81, 2474.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • C. Lämmerzahl
    • 1
  • G. Ahlers
    • 2
  • N. Ashby
    • 3
  • M. Barmatz
    • 4
  • P. L. Biermann
    • 5
  • H. Dittus
    • 1
  • V. Dohm
    • 6
  • R. Duncan
    • 7
  • K. Gibble
    • 8
  • J. Lipa
    • 9
  • N. Lockerbie
    • 10
  • N. Mulders
    • 11
  • C. Salomon
    • 12
  1. 1.Center of Applied Space Technology and Microgravity ZARMUniversity of Bremen, Am FallturmBremenGermany
  2. 2.iQUEST and Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Physics DepartmentUniversity of Colorado at BoulderBoulderUSA
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  5. 5.Max-Planck-Institute for Radio AstronomyBonnGermany
  6. 6.Institute for Theoretical PhysicsAachen UniversityAachenGermany
  7. 7.University of New MexicoAlbuquerqueUSA
  8. 8.Department of PhysicsPenn State UniversityUniversity ParkUSA
  9. 9.Physics DepartmentStanford UniversityStanfordUSA
  10. 10.Department of Physics and Applied PhysicsUniversity of StrathclydeGlasgowScotlandUnited Kingdom
  11. 11.Department of Physics and AstronomyUniversity of DelawareNewarkUSA
  12. 12.Département de physique de l'Ecole Normale SupérieureLaboratoire Kastler BrosselParisFrance

Personalised recommendations