Advertisement

General Relativity and Gravitation

, Volume 36, Issue 2, pp 387–401 | Cite as

Some High-Frequency Gravitational Waves Related to Exact Radiative Spacetimes

  • J. Podolský
  • O. Svítek
Article

Abstract

A formalism is introduced which may describe both standard linearized waves and gravitational waves in Isaacson's high-frequency limit. After emphasizing main differences between the two approximation techniques we generalize the Isaacson method to non-vacuum spacetimes. Then we present three large explicit classes of solutions for high-frequency gravitational waves in particular backgrounds. These involve non-expanding (plane, spherical or hyperbolical), cylindrical, and expanding (spherical) waves propagating in various universes which may contain a cosmological constant and electromagnetic field. Relations of high-frequency gravitational perturbations of these types to corresponding exact radiative spacetimes are described.

gravitational waves high-frequency limit exact solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    Isaacson, R. A. (1968). Phys. Rev. 166, 1263–1280.Google Scholar
  2. [2]
    Einstein, A. (1916). Preuss. Akad. Wiss. Sitz. 1, 688–696.Google Scholar
  3. [3]
    Einstein, A. (1918). Preuss. Akad. Wiss. Sitz. 1, 154–167.Google Scholar
  4. [4]
    Misner, C. W., Thorne, K. S., and Wheeler J. A. (1973). Gravitation, W. H. Freeman, San Francisco, California.Google Scholar
  5. [5]
    Wheeler, J. A. (1962). Geometrodynamics, Academic Press, New York.Google Scholar
  6. [6]
    Brill, D. R., and Hartle, J. B. (1964). Phys. Rev. 135, B271–B278.Google Scholar
  7. [7]
    Choquet-Bruhat, Y. (1968). Rend. Acc. Lincei 44, 345–348.Google Scholar
  8. [8]
    Choquet-Bruhat, Y. (1968). Commun. Math. Phys. 12, 16–35.Google Scholar
  9. [9]
    MacCallum, M. A. H., and Taub, A. H. (1973). Commun. Math. Phys. 30, 153–169.Google Scholar
  10. [10]
    Taub, A. H. (1980). In General Relativity and Gravitation, Vol. 1, A. Held (Ed.), Plenum, New York, pp. 539–555.Google Scholar
  11. [11]
    Araujo, M. E. (1986). Gen. Rel. Grav. 18, 219–233.Google Scholar
  12. [12]
    Araujo, M. E. (1989). Gen. Rel. Grav. 21, 323–348.Google Scholar
  13. [13]
    Elster, T. (1981). Gen. Rel. Grav. 13, 731–745.Google Scholar
  14. [14]
    Burnett, G. A. (1989). J. Math. Phys. 30, 90–96.Google Scholar
  15. [15]
    Taub, A. H. (1976). Commun. Math. Phys. 47, 185–196.Google Scholar
  16. [16]
    [16] Hogan, P. A., and Futamase, T. (1993). J. Math. Phys. 34, 154–169.Google Scholar
  17. [17]
    Brinkmann, H. W. (1925). Proc. Natl. Acad. Sci. USA 9, 1.Google Scholar
  18. [18]
    Bondi, H., Pirani, F. A. E., and Robinson, I. (1959). Proc. Roy. Soc. Lond. A 251, 519–533.Google Scholar
  19. [19]
    Kundt, W. (1961). Z. Phys. 163, 77–86.Google Scholar
  20. [20]
    Ehlers, J., and Kundt, K. (1962). In Gravitation: An Introduction to Current Research, L. Witten (Ed.), Wiley, New York, pp. 49–101.Google Scholar
  21. [21]
    Einstein, A., and Rosen, N. (1937). J. Franklin. Inst. 223, 43–45.Google Scholar
  22. [22]
    Robinson, I., and Trautman, A. (1960). Phys. Rev. Lett. 4, 431–432.Google Scholar
  23. [23]
    Robinson, I., and Trautman, A. (1962). Proc. Roy. Soc. Lond. A 265, 463–473.Google Scholar
  24. [24]
    Bonnor, W. B., and Swaminarayan, N. S. (1964). Z. Phys. 177, 240–256.Google Scholar
  25. [25]
    Bi?ák, J. (1968). Proc. Roy. Soc. A 302, 201–224.Google Scholar
  26. [26]
    Kinnersley, W., and Walker, M. (1970). Phys. Rev. D 2, 1359–1370.Google Scholar
  27. [27]
    Gowdy, R. H. (1971). Phys. Rev. Lett. 27, 826–829.Google Scholar
  28. [28]
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980). Exact Solutions of Einstein's Field Equations, Cambridge University Press, Cambridge.Google Scholar
  29. [29]
    Carmeli, M., Charach, Ch., and Malin, S. (1981). Phys. Rep. 76, 79–156.Google Scholar
  30. [30]
    Bi?ák, J., and Schmidt, B. G. (1989). Phys. Rev. D 40, 1827–1853.Google Scholar
  31. [31]
    Bonnor, W. B., Griffiths, J. B., and MacCallum, M. A. H. (1994). Gen. Rel. Grav. 26, 687–729.Google Scholar
  32. [32]
    Bi?ák, J. (2000). In Einstein's Field Equations and Their Physical Implications, B. G. Schmidt (Ed.), Springer-Verlag, Berlin, pp. 1–126.Google Scholar
  33. [33]
    Feinstein, A. (1988). Gen. Rel. Grav. 20, 183–190.Google Scholar
  34. [34]
    Bennett, C. L., et al. (2003). Astrophys. J. Suppl. 148, 1–241. (astro-ph/0302207).Google Scholar
  35. [35]
    Efroimsky, M. (1992). Class. Quant. Grav. 9, 2601–2614.Google Scholar
  36. [36]
    Podolsk?, J., and Ortaggio, M. (2003). Class. Quant. Grav. 20, 1685–1701.Google Scholar
  37. [37]
    Ozsváth, I., Robinson, I., and Rózga, K. (1985). J. Math. Phys. 26, 1755–1761.Google Scholar
  38. [38]
    Siklos, S. T. C. (1985). In Galaxies, Axisymmetric Systems and Relativity, M. A. H. MacCallum (Ed.), Cambridge University Press, Cambridge, pp. 247–274.Google Scholar
  39. [39]
    Bi?ák, J., and Podolsk?, J. (1999). J. Math. Phys. 40, 4495–4505.Google Scholar
  40. [40]
    Nariai, H. (1951). Sci. Rep. Tôhoku Univ. 35, 62–67.Google Scholar
  41. [41]
    Bertotti, B. (1959). Phys. Rev. 116, 1331–1333.Google Scholar
  42. [42]
    Robinson, I. (1959). Bull. Acad. Polon. 7, 351–352.Google Scholar
  43. [43]
    Pleba?ski, J. F., and Hacyan, S. (1979). J. Math. Phys. 20, 1004–1010.Google Scholar
  44. [44]
    Ortaggio, M., and Podolsk?, J. (2002). Class. Quant. Grav. 19, 5221–5227.Google Scholar
  45. [45]
    Carmeli, M., and Charach, Ch. (1984). Found. Phys. 14, 963–986.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • J. Podolský
    • 1
  • O. Svítek
    • 1
  1. 1.Institute of Theoretical PhysicsCharles University in PraguePrague 8Czech Republic

Personalised recommendations