General Relativity and Gravitation

, Volume 36, Issue 2, pp 361–372 | Cite as

On the Possibility of Testing the Weak Equivalence Principle with Artificial Earth Satellites

  • Lorenzo Iorio


In this paper we examine the possibility of testing the equivalence principle, in its weak form, by analyzing the orbital motion of a pair of artificial satellites of different composition moving along orbits of identical shape and size in the gravitational field of the Earth. It turns out that the obtainable level of accuracy is, realistically, of the order of 10−10 or slightly better. It is limited mainly by the fact that, due to the unavoidable orbital injection errors, it would not be possible to insert the satellites in orbits with exactly the same radius and that such difference could be known only with a finite precision. The present–day level of accuracy, obtained with torsion balance Earth–based measurements and the analysis of the Earth–Moon motion in the gravitational field of the Sun with the Lunar Laser Ranging technique, is of the order of 10−13. The proposed space–based missions STEP, μSCOPE, GG and SEE aim to reach a 10−15–10−18 precision level.

Equivalence principle earth gravity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Will, C. M. (1993). Theory and Experiment in Gravitational Physics, 2nd Edition, Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  2. [2]
    Ciufolini, I., and Wheeler, J. A. (1995). Gravitation and Inertia, Princeton University Press, New York.Google Scholar
  3. [3]
    Haugan, M. P., and Lämmerzahl, C. (2001). In: Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, C. Lämmerzahl, C.W. F. Everitt, and F.W. Hehl (Eds.), Springer-Verlag, Berlin, pp. 195–212.Google Scholar
  4. [4]
    Will, C. M. (2001). Living Rev. Rel. 2001-4 [Article in Online Journal] cited on: 25 June 2003, Scholar
  5. [5]
    Nordvedt, K. (1968a). Phys. Rev. 169, 1017–1025.Google Scholar
  6. [6]
    Nordvedt, K. (1968b). Phys. Rev. 170, 1186–1187.Google Scholar
  7. [7]
    Anderson, J. D., and Williams, J. G. (2001). Class. Quant. Grav. 18, 2447–2456.Google Scholar
  8. [8]
    Adelberger, E. G. (2001). Class. Quant. Grav. 18, 2397–2405.Google Scholar
  9. [9]
    Lockerbie, N., Mester, J. C., Torii, R., Vitale, S., and Worden, P. W. (2001.) In Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space, C. Lämmerzahl, C. W. F. Everitt, and F. W. Hehl (Eds.), Springer-Verlag, Berlin, pp. 213–247.Google Scholar
  10. [10]
    Touboul, P. (2001.) In Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space, C. Lämmerzahl, C. W. F. Everitt, and F. W. Hehl (Eds.), Springer-Verlag, Berlin, pp. 273–291.Google Scholar
  11. [11]
    Nobili, A. M., Bramanti, D., Polacco, E., Roxburgh, I. W., Comandi, G., and Catastini, G. (2000). Class. Quant. Grav. 17, 2347–2349.Google Scholar
  12. [12]
    Sanders, A. J., Alexeev, A. D., Allison, S. W., Antonov, V., Bronnikov, K. A., Campbell, J. W., Cates, M. R., Corcovilos, T. A., Earl, D. D., Gadfort, T., Gillies, G. T., Harris, M. J., Kolosnitsyn, N. I., Konstantinov, M. Y., Melnikov, V. N., Newby, R. J., Schunk, R. G., and Smalley, L. L. (2000). Class. Quant. Grav. 17, 2331–2346.Google Scholar
  13. [13]
    Damour, T., and Polyakov, A. M. (1994a). Nucl. Phys. B 423, 532–558.Google Scholar
  14. [14]
    Damour, T., and Polyakov, A. M. (1994b). Gen. Rel. Grav. 26, 1171–1176.Google Scholar
  15. [15]
    Will, C. M. (1989). Phys. Rev. Lett. 62, 369–372.Google Scholar
  16. [16]
    Moffat, J. W., and Gillies, G. T. (2002). N. J. Phys. 4, 92.Google Scholar
  17. [17]
    Iorio, L. (2001a). Celest. Mech. 79, 201–230.Google Scholar
  18. [18]
    Kaula, W. M. (1966). Theory of Satellite Geodesy, Blaisdell, Waltham, 124 pp. Amsterdam, 4-8 October (1999).Google Scholar
  19. [19]
    Mashhoon, B., Gronwald, F., and Theiss, D. S. (1999). Annalen Phys. 8, 135–152.Google Scholar
  20. [20]
    Mashhoon, B., Iorio, L., and Lichtenegger, H. I. M. (2001). Phys. Lett. A 292, 49–57.Google Scholar
  21. [21]
    Iorio, L., Lichtenegger, H. I. M., and Mashhoon, B. (2002). Class. Quant. Grav. 19, 39–49.Google Scholar
  22. [22]
    McCarthy, D. D. (1996). IERS Conventions (1996), IERS Technical Note 21, U.S. Naval Observatory.Google Scholar
  23. [23]
    Lemoine, F. G.,Kenyon, S. C., Factor, J. K.,Trimmer,R. G., Pavlis, N. K., Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B.,Torrence,M.H.,Wang,Y. M.,Williamson, R. G., Pavlis, E. C., Rapp, R. H., and Olson, T. R. (1998). In The Development of the Joint NASA GSFC and the National Imagery Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861.Google Scholar
  24. [24]
    Peterson, G. E. (1997). Report CSR-97-1, Center for Space Research, The University of Texas at Austin.Google Scholar
  25. [25]
    Iorio, L. (2001b). Int. J. Mod. Phys. D 10, 465–476.Google Scholar
  26. [26]
    Davis, E., Stanton, R. H., Dunn, C. E., and Thomas, J. B. (1999). In 50th International Astronautical Congress, IAF-99-B.2.05 Conference AAS 90-034. Amsterdam, 4-8 October (1999).Google Scholar
  27. [27]
    Milani, A., Nobili, A. M., and Farinella, P. (1987). Non-Gravitational Perturbations and Satellite Geodesy, Adam Hilger, Bristol, p. 125.Google Scholar
  28. [28]
    Lucchesi, D. (2001). Planet. Space Sci. 49, 447–463.Google Scholar
  29. [29]
    Lucchesi, D. (2002). Planet. Space Sci. 50, 1067–1100.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Lorenzo Iorio
    • 1
  1. 1.Dipartimento di Fisica dell'Università di BariBariItaly

Personalised recommendations