Advertisement

General Relativity and Gravitation

, Volume 36, Issue 1, pp 71–82 | Cite as

Quasinormal Modes of Charged Dilaton Black Holes in 2 + 1 Dimensions

  • Sharmanthie Fernando
Article

Abstract

We have studied the scalar perturbation of static charged dilaton black holes in 2 + 1 dimensions. The black hole considered here is a solution to the low-energy string theory in 2 + 1 dimensions. It is asymptotic to the anti-de Sitter space. The exact values of quasinormal modes for the scalar perturbations are calculated. For both the charged and uncharged cases, the quasinormal frequencies are pure-imaginary leading to purely damped modes for the perturbations.

Static charged dilaton black holes quasinormal modes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    Kokkotas, K. D. and Schmidt, B. G. (1999). Living Rev. Relat. 2, 2.Google Scholar
  2. [2]
    Aharony, O., Gubser, S. S., Maldacena, J., Ooguri, H., and Oz, Y. (1999). (hep-th/9905111).Google Scholar
  3. [3]
    Chan, J. and Mann, R. (1997). Phys. Rev. D 55, 7546; Chan, J. and Mann, R. (1999). Phys. Rev. D 59, 064025.Google Scholar
  4. [4]
    Horowitz, G. T. and Hubeny, V. E. (2000). Phys. Rev. D 62, 024027.Google Scholar
  5. [5]
    Cardoso, V. and Lemos, J. P. S. (2001). Phys. Rev. D 64, 084017.Google Scholar
  6. [6]
    Moss, I. G. and Norman, J. P. (2002). Class. Quant. Grav. 19, 2323.Google Scholar
  7. [7]
    Wang, B., Lin, C. Y., and Abdalla, E. (2000). Phys. Lett B 481, 79.Google Scholar
  8. [8]
    Bertie, E. and Kokkotas, K. D. (2002). Phys. Rev. D 67, 064020.Google Scholar
  9. [9]
    Konoplya, R. A. (gr-qc/0303052).Google Scholar
  10. [10]
    Konoplya, R. A. (2002). Phys. Lett. B 550, 117.Google Scholar
  11. [11]
    Konoplya, R. A. (2002). Phys. Rev. D 66, 084007.Google Scholar
  12. [12]
    Konoplya, R. A. (2002). Phys. Rev. D 66, 044009.Google Scholar
  13. [13]
    Konoplya, R. A. (2002). Gen. Rel. Grav. 34, 329.Google Scholar
  14. [14]
    Li, X., Hao, J., and Liu, D. (2001). Phys. Lett. B 507, 312.Google Scholar
  15. [15]
    Nunez, A. and Starinets, A. O. (2003). Phys. Rev. D 67, 174013.Google Scholar
  16. [16]
    Aros, R., Martinez, C., Troncoso, R., and Zanelli, J. (2002). Phys. Rev. D 67, 044014.Google Scholar
  17. [17]
    Bañados, M., Teitelboim, C., and Zanelli, J. (1992). Phys. Rev. Lett. 69, 1849; Bañados, M., Henneaux, M., Teitelboim, C., and Zanelli, J. (1993). Phys. Rev. D 48, 1506.Google Scholar
  18. [18]
    Birmingham, D. (2001). Phys. Rev. D 64, 064024.Google Scholar
  19. [19]
    Birmingham, D., Sachs, I., and Solodukhin, S. N. (2002). Phys. Rev. Lett. 88, 151301.Google Scholar
  20. [20]
    Cardoso, V. and Lemos, J. P. S. (2001). Phys. Rev. D 63, 124015.Google Scholar
  21. [21]
    Abdalla, E., Wang, B., Lima-Santos, A., and Qiu, W. G. (2002). Phys. Lett. B 38, 435.Google Scholar
  22. [22]
    Chan, K. C. K. (1996). Phys. Lett. B 373, 296.Google Scholar
  23. [23]
    Hirshmann, E. W. and Welch, D. L. (1996). Phys. Rev. D 53, 5579.Google Scholar
  24. [24]
    Koikawa, T. (1995). Phys. Lett B 353, 196.Google Scholar
  25. [25]
    Clement, G. (1996). Phys. Lett. B 367, 70.Google Scholar
  26. [26]
    Fernando, S. and Mansouri, F. (1998). Commun. Math. Theor. Phys. 1, 14.Google Scholar
  27. [27]
    Chan, K. C. K. and Mann, R. B. (1994). Phys. Rev. D 50, 6385.Google Scholar
  28. [28]
    Gibbons, G. W. and Madea, K. (1988). Nucl. Phys. B 298, 741.Google Scholar
  29. [29]
    Garfinkle, D., Horowitz, G. T., and Strominger, A. (1991). Phys. Rev D 43, 3140.Google Scholar
  30. [30]
    Mandal, G., Senguptha, A. M., and Wadia, S. R. (1991). Mod. Phys. Lett. A 6, 1685.Google Scholar
  31. [31]
    Witten, E. (1991). Phys. Rev. D 44, 314.Google Scholar
  32. [32]
    Horowitz, G. (1992). (hep-th/9210119).Google Scholar
  33. [33]
    Hassan, S. and Sen, A. (1992). Nucl. Phys. B 375, 103.Google Scholar
  34. [34]
    Horowitz, G. and Welch, D. (1993). Phys. Rev. Lett. 71, 328–331.Google Scholar
  35. [35]
    Abramowitz, M. and Stegun, A. (1977). Handbook of Mathematical Functions, Dover, New York.Google Scholar
  36. [36]
    Choptunik, M. W. (1993). Phys. Rev. Lett. 70, 9.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Sharmanthie Fernando
    • 1
  1. 1.Department of Physics & GeologyNorthern Kentucky UniversityHighland HeightsUSA

Personalised recommendations