Geometriae Dedicata

, Volume 106, Issue 1, pp 211–230 | Cite as

The Hopf Property for Subgroups of Hyperbolic Groups

  • Inna Bumagina


A group is said to be Hopfian if every surjective endomorphism of the group is injective. We show that finitely generated subgroups of torsion-free hyperbolic groups are Hopfian. Our proof generalizes a theorem of Sela (Topology35 (2) 1999, 301–321).

Mathematics Subject Classifications (2000). 20F67 57M07 Hyperbolic groups group action on real trees decompositions of groups endomorphisms of groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lyndon, R. C. and Shupp, P. E.: Combinatorial Group Theory, Springer-Verlag, Berlin, 1977.Google Scholar
  2. 2.
    Ceccherini-Silberstein, T. G., Grigorchuk, R. I. and Scarabotti, F.: Analytical methods in group theory: hopfianity of free groups, Preprint.Google Scholar
  3. 3.
    Mal'cev, B.: On the faithful representation of infinite groups by matrices, Math. Sb. (N.S.) 8(50) (1940), 405–422; English translation in Amer. Math. Soc. Transl. 45(2) (1965),1-18.Google Scholar
  4. 4.
    Geoghegan, R., Mihalik, M., Sapir M. and Wise, D.: Ascending HNN extensions of finitely generated free groups are Hopfian, Proc. London. Math. Soc. 33 (2001), 292–298.Google Scholar
  5. 5.
    Neumann, B.: A two-generator group isomorphic to a proper factor group, J. London. Math. Soc. 25 (1950), 247–248.Google Scholar
  6. 6.
    Higman, G.: A finitely related group with an isomorphic proper factor group, J. London. Math. Soc. 26 (1951), 59–61.Google Scholar
  7. 7.
    Baumslag, G. and Solitar, D.; Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199–201.Google Scholar
  8. 8.
    Kurosh, A. G.: The Theory of Groups, 3rd edn, 1967, (in Russian).Google Scholar
  9. 9.
    Meier, D.: Non-Hopfian groups, J. London Math. Soc. 26(2) (1982), 265–270.Google Scholar
  10. 10.
    Wise, D.: A non-Hopfian automatic group, J. Algebra 180 (1996), 845–847.Google Scholar
  11. 11.
    Sela, Z. Endomorphisms of hyperbolic groups I: The Hopf property, Topology 38(2) (1999), 301–321.Google Scholar
  12. 12.
    Rips, E.: Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982), 45–47.Google Scholar
  13. 13.
    Sela, Z.: Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups II, GAFA 7 (1997), 561–593.Google Scholar
  14. 14.
    Kapovich, I. and Wise, D.: On the failure of the co-Hopf property for subgroups of wordhyperbolic groups), Israel J. Math. 122(2001), 125–147.Google Scholar
  15. 15.
    Bestvina, M.: Degeneration of hyperbolic space, Duke Math. J. 56 (1988), 143–161.Google Scholar
  16. 16.
    Paulin, F.: Outer automorphisms of hyperbolic groups and small actions on R-trees, In: R. C. Alperin (ed.), Arboreal Group Theory, MSRI Publ. 19, Amer. Math. Soc., Providence, 1991, pp. 331–343.Google Scholar
  17. 17.
    Paulin, F.: Topologie de Gromové quivariante, structures hyperboliques et arbres ré els,Invent. Math. 94 (1988), 53–80.Google Scholar
  18. 18.
    Bestvina, M. and Feighn, M.: Stable actions of groups on real trees, Invent. Math. 121 (1995), 287–321.Google Scholar
  19. 19.
    Rips, E. and Sela, Z.: Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math. 146 (1997), 53–104.Google Scholar
  20. 20.
    Sela, Z.: Acylindrical accessibility for groups, Invent. Math. 129(1997), 527–565.Google Scholar
  21. 21.
    Alonso, J. M., Brady, T., Cooper, D. et al.: Notes on word hyperbolic groups, In: E. Ghys, A. Haefliger and A. Verjovsky (eds), Group Theory from a Geometrical Viewpoint, ICTP, Trieste, 1990, pp. 3-63.Google Scholar
  22. 22.
    Coornaert, M., Delzant, T. and Papadopoulos, A.: Geometrie et theorie des groupes, Lecture Notes in Math. 1441, Springer-Verlag, New York, 1990.Google Scholar
  23. 23.
    Ol'shanskii, A. Yu.: Hyperbolic groups, manuscript.Google Scholar
  24. 24.
    Bridson, M. R. and Swarup, G. A.: On Hausdorff-Gromov convergence and a theorem of Paulin, Enseign Math. 40(1994), 267–289.Google Scholar
  25. 25.
    Gromov, M.: Groups of polynomial growth and expanding maps, Publ. Math. IHES 53 (1981), 53–78.Google Scholar
  26. 26.
    Paulin, F.: Actions de groupes sur les arbres, Sémi Bourbaki 94 (1997), 97–137.Google Scholar
  27. 27.
    Gaboriau, D., Levitt, G. and Paulin, F.: Pseudogroups of isometries of R and Rips' theorem on free actions on R-trees, Israel. J. Math. 87 (1994), 403–428.Google Scholar
  28. 28.
    Guirardel, V. Approximations of stable actions on R-trees, Comment. Math. Helv. 73 (1998), 89–121.Google Scholar
  29. 29.
    Bestvina, M.: R-trees in topology, geometry, and group theory, Preprint.Google Scholar
  30. 30.
    Kapovich, M.: Hyperbolic Manifolds and Discrete Groups: Lectures on Thurston's Hyperbolization, Progr. in Math., Birkhäuser, Basel, 2000.Google Scholar
  31. 31.
    Rips, E.: Cyclic splittings of finitely presented groups and the canonical JSJ-decomposition Proc. ICM Zurich, 1994, pp. 595-600.Google Scholar
  32. 32.
    Dunwoody, M. J. and Sageev, M. E.: JSJ-splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999), 25–44.Google Scholar
  33. 33.
    Fujiwara, K. and Papasoglu, P.: JSJ-decompositions of finitely presented groups and complexes of groups, Preprint.Google Scholar
  34. 34.
    Bowditch, B. H.: Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1988), 145–186.Google Scholar
  35. 35.
    Forester, M.: On uniqueness of JSJ decompositions of finitely generated groups, Comment. Math. Helv., in press.Google Scholar
  36. 36.
    Serre, J. P. Trees, Springer-Verlag, Berlin, 1980.Google Scholar
  37. 37.
    Gromov, M.: Hyperbolic groups, In: S. M. Gersten (ed.), Essays in Group Theory, MSRI Ser. 8, Springer-Verlag, New York, pp. 75-263.Google Scholar
  38. 38.
    Higman, G., Neumann, B. H. and Neumann, H.: Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247–254.Google Scholar
  39. 39.
    Kargapolov, M. and Merzliakov, Yu.: Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979 (English edition).Google Scholar
  40. 40.
    Rips, E. and Sela, Z.: Structure and rigidity in hyperbolic groups I, GAFA 4 (1994), 337–371.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Inna Bumagina
    • 1
  1. 1.Department of Mathematics and StatisticsMcGill University, 805MontrealCanada H3A 2K6; e-mail:

Personalised recommendations