Advertisement

Geometriae Dedicata

, Volume 105, Issue 1, pp 61–76 | Cite as

A Geometric Proof of Stallings' Theorem on Groups with More than One End

  • Graham A. Niblo
Article

Abstract

Stallings showed that a finitely generated group which has more than one end splits as an amalgamated free product or an HNN extension over a finite subgroup. Dunwoody gave a new geometric proof of the theorem for the class of almost finitely presented groups, and separately, using somewhat different methods, generalised it to a larger class of splittings. Here we adapt the geometric method to the class of finitely generated groups using Sageev's generalisation of Bass Serre theory concerning group pairs with more than one end, and show that this new proof simultaneously establishes Dunwoody's generalisation.

amalgamated free product Bass–Serre theory CAT(0) cube complex ends HNN extension singularity obstruction Stallings' theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bridson, M. R. and Haefliger, A.: Metric Spaces of Non-positive Curvature, Springer-Verlag, Berlin, 1999.Google Scholar
  2. 2.
    Bowditch, B. H.: Groups acting on Cantor sets and the end structure of graphs, Pacific J. Math. 207(1) (2002), 31–59.zbMATHMathSciNetGoogle Scholar
  3. 3.
    Dicks, W. and Dunwoody, M. J.: Groups Acting on Graphs, Cambridge University Press, 1989.Google Scholar
  4. 4.
    Dunwoody, M. J.: Cutting up graphs, Combinatorica 2(1) (1982), 15–23.zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dunwoody, M. J.: The accessibility of finitely presented groups, Invent. Math. 81 (1985), 449–457.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dunwoody, M. J. and Roller, M. A.: Splittings of groups over polycyclic by finite groups, Bull. London Math. Soc. 25 (1993), 39–96.MathSciNetGoogle Scholar
  7. 7.
    Dunwoody, M. J. and Swenson, E. L.: The algebraic torus theorem, Invent. Math. 140(3) (2000), 605–637.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Jaco, W. and Rubinstein, J.: PL-minimal surfaces in 3-manifolds, J. Differential Geom. 27 (1988), 493–524.MathSciNetGoogle Scholar
  9. 9.
    Niblo, G. A.: Finding splittings of groups and 3-manifolds, Bull. London Math. Soc. 27 (1995), 567–574.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Niblo, G. A.: The singularity obstruction for group splittings, Topology Appl. 119(1) (2002), 17–31.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Niblo, G. A. and Reeves, L. D.: The geometry of cube complexes and the complexity of their fundamental groups, Topology 37(3) (1998), 621–633.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Niblo, G. A. and Reeves, L. D.: Coxeter groups act on CAT(0) cube complexes, J. Group Theory 6 (2003), 399–413.MathSciNetGoogle Scholar
  13. 13.
    Jaco, W. and Rubinstein, J. H.: PL minimal surfaces in 3-manifolds, J. Differential Geom. 27(3) (1988), 493–524.MathSciNetGoogle Scholar
  14. 14.
    Sageev, M.: Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71(3) (1995), 585–617.zbMATHMathSciNetGoogle Scholar
  15. 15.
    Scott, G. P.: Ends of pairs of groups, J. Pure Appl. Algebra 11 (1977), 179–198.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Scott, G. P. and Swarup, G. A.: An algebraic annulus theorem, Pacific J. Math. 196(2) (2000), 461–506.MathSciNetGoogle Scholar
  17. 17.
    Serre, J. P.: Trees, Translated from the French by John Stillwell, Springer-Verlag, Berlin, 1980.Google Scholar
  18. 18.
    Stallings, J. R.: On torsion-free groups with infinitely many ends, Ann. of Math. 88 (1968), 312–334.zbMATHMathSciNetGoogle Scholar
  19. 19.
    Stallings, J. R.: Group Theory and 3-Dimensional Manifolds, Yale Math. Monogr. 4, Yale University Press, New Haven, 1971.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Graham A. Niblo
    • 1
  1. 1.Faculty of Mathematical StudiesUniversity of SouthamptonHighfield, SouthamptonU.K.

Personalised recommendations