Geometriae Dedicata

, Volume 105, Issue 1, pp 231–235 | Cite as

Examples of Large Centralizers in the Artin Braid Groups

  • Nikolai V. Ivanov
Artin braid groups centralizers generators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Arn]
    Arnold, V. I.: The cohomology ring of the group of dyed braids, Mat. Zam. 5(5) (1969), 227–231.zbMATHGoogle Scholar
  2. [Art]
    Artin, E.: Theory of braids, Ann. of Math. 49 (1948), 101–126.MathSciNetGoogle Scholar
  3. [Bir]
    Birman, J.: Braid, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, 1975.Google Scholar
  4. [Bur]
    Burde, G.: Ñber Normalisatoren der Zopfgruppe, Abh. Math. Sem. Univ. Hamburg 27 (1964), 235–254.MathSciNetGoogle Scholar
  5. [F-GM]
    Franco, N. and González-Meneses, J.: Computation of centralizers in braid groups and Garside groups, Preprint, arXiv:math.GT/0201243, to appear in Revista mate. Iberoamericana. Google Scholar
  6. [GM-W]
    González-Meneses, J. and Wiest, B.: On the structure of the centralizer of a braid, Preprint, arXiv:math.GT/0305156.Google Scholar
  7. [Gu1]
    Gurzo, G. G.: Systems of generators for normalizers of certain elements of the braid group, Izve. AN SSSR 48(3) (1984), 476–519. English translation: Math. USSR-Izvest. 24(3) (1985), 439-478.zbMATHMathSciNetGoogle Scholar
  8. [Gu2]
    Gurzo, G. G.: Systems of generators for centralizers of rigid elements of the braid group, Izve. AN SSSR 51(5) (1987), 915–935. English translation: Math. USSR-Izvest. 24(3) (1985), 223-244.zbMATHGoogle Scholar
  9. [IIM]
    Irmak, E., Ivanov, N. V. and McCarthy, J. D.: Automorphisms of surface braid groups, Preprint, arXiv:math.GT/0306069.Google Scholar
  10. [I1]
    Ivanov, N. V.: Automorphisms of Teichmüller modular groups, In: Lecture Notes in Math. 1346, Springer-Verlag, New York, 1988, pp. 199–270.Google Scholar
  11. [I2]
    Ivanov, N. V.: Subgroups of Teichmüller Modular Groups, Transl. Math. Monogr. 115, Amer. Math. Soc., Providence, 1992.Google Scholar
  12. [I3]
    Ivanov, N. V.: Braids and Thurston's classification, Talk at the Special Session Mapping class groups and geometric theory of Teichmüller spaces, Amer. Math. Soc. Ann Arbor, MI, 1–3 March, 2002.Google Scholar
  13. [M]
    McCarthy, J. D.: Normalizers and centralizers of pseudo-Anosov mapping classes, Preprint, 1982; revised version 1994.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Nikolai V. Ivanov
    • 1
  1. 1.Department of MathematicsMichigan State UniversityEast LansingU.S.A.

Personalised recommendations