, Volume 121, Issue 2, pp 155–164 | Cite as

Identification of Two Subfamilies of micropia Transposable Element in Species of the repleta Group of Drosophila

  • Luciane M. de Almeida
  • Claudia M.A. Carareto


The occurrence, number of insertion sites and antisense RNA expression of micropia transposable element were studied in 26 species that belong to three subgroups (mercatorum, mulleri and hydei) of repleta group of Drosophila. Under high specific PCR, micropia sequences were detected in 11 species, but under less stringent condition, this retrotransposon was detected in all species. The widespread distribution of micropia suggests that this element was already present at the common ancestor of the repleta group of Drosophila. Southern blot analysis showed a variation from 0 to 17 different insertion sites and the occurrence of male-specific sequences. We found that the expression of the 1.0 kb micropia antisense RNA is variable among the species and tissues (soma and testis), which suggests that more than one mechanism regulates transposition in these species. Variation of amplification by PCR and of antisense RNA expression, as well as divergence of nucleotide sequences among the species allow us to suggest that at least two subfamilies of micropia transposable element are harbored by the genome of this species group.

antisense RNA Drosophila micropia micropia subfamilies number of insertion sites repleta group retrotransposon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida, L.M., J.P. Castro & C.M.A. Carareto, 2001. Micropia transposable element presence in Drosophila saltans group. Dros. Inf. Serv. 84: 114–117.Google Scholar
  2. Capy, P., C. Bazin, D. Higuet & T. Langin, 1998. Classification of transposable elements, pp. 37–52 in Dynamics and Evolution of Transposable Elements, 1st edn. Landes Bioscience, France.Google Scholar
  3. Chakrabarti, R. & C.E. Schutt, 2001. The enhancement of PCR amplification by low molecular-weight sulfones. Gene 274: 293–298.PubMedGoogle Scholar
  4. Durando, C., R. Baker, W. Etges, B. Heed, M. Wasserman & R. De Salle, 2000. Phylogenetic analysis of the repleta species group of the genus Drosophila using multiple sources of characters. Mol. Phylogenet. Evol. 2: 296–307.Google Scholar
  5. Finnegan, D., 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103–107.Google Scholar
  6. Huijser, P., C. Kirchhoff, D.-H. Lankenau & W. Hennig, 1988. Retrotransposon-like sequences are expressed in Y chromosomal lampbrush loops of Drosophila hydei. J. Mol. Biol. 203: 689–697.PubMedGoogle Scholar
  7. Jowett, T., 1986. Preparation of nucleic acids, pp. 275–286 in Roberts D.B. (ed), Drosophila: A Practical Approach, edited by D.B. Roberts. IRL Press, Oxford.Google Scholar
  8. Kaplan, N.L., T. Darden & C. Langley, 1985. Evolution and extinction of transposable elements in Mendelian populations. Genetics 109: 459–480.PubMedGoogle Scholar
  9. Lankenau, D.-H., 1993. The retrotransposon family micropia in Drosophila species, pp. 232–241 in J. McDonald(ed.), Transposable Elements and Evolution. Kluwer Publishers, Amsterdam.Google Scholar
  10. Lankenau, D.-H., P. Huijer & W. Hennig, 1989. Characterization of the long terminal repeats of micropia elements dissected from the Y chromosomal lampbrush loops 'Threads' of Drosophila hydei. J. Mol. Biol. 209: 493–497.PubMedGoogle Scholar
  11. Lankenau, S., G.V. Corces & D.-H. Lankenau, 1994. The Drosophila micropia retrotransposon encodes a testis-specific anti-sense RNA complementary to reverse transcriptase. Mol. Cell Biol. 14: 1764–1775.PubMedGoogle Scholar
  12. Silva, J.C. & M.G. Kidwell, 2000. Horizontal transfer and selection in the evolution of P elements. Mol. Biol. Evol. 17(10): 1542–1557.PubMedGoogle Scholar
  13. Swofford, D., 1997. PAUP: Phylogenetic analysis using parsimony. Version 4.0b10. Smithsonian Institution, Washington, D.C.Google Scholar
  14. Tatarenkov, A. & J.F. Ayala, 2001. Phylogenetic relationships among species groups of virlis-repleta Radiation of Drosophila. Mol. Phylogenet. Evol. 21: 327–331.PubMedGoogle Scholar
  15. Vanheé-Brossollet, C. & C. Vaquero, 1998. Do natural antisense transcripts make sense in eukaryotes? Gene 211: 1–9.PubMedGoogle Scholar
  16. Thompson, J.D., D.G. Higgins & T.J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Luciane M. de Almeida
    • 1
  • Claudia M.A. Carareto
    • 1
  1. 1.Laboratory of Molecular Evolution of Insects, Department of BiologyUniversity of Sao Paulo State (IBILCE-UNESP)São José do Rio Preto, SPBrazil

Personalised recommendations