Genetica

, Volume 121, Issue 2, pp 119–123 | Cite as

Heritability of Wing Morphology in a Natural Population of Drosophila gouveai

  • Evandro Marsola Moraes
  • Fabio Melo Sene

Abstract

The natural and laboratory heritabilities of a series of parameters related to wing size and shape were estimated in a population of Drosophila gouveai (repleta group) under field and laboratory conditions. A morphometric analysis was done using 17 wing parameters related to wing landmark positions obtained using the method of the best adjustment of an ellipse to the wing edge. Three parameters (θA, θC and θD) showed highly significant heritability in the wild (average 0.61), whereas only wing size (WSI) had significant heritability in the laboratory (0.71). The additive genetic variance of most parameters was greater in the wild than in the laboratory. These results showed that some parameters possessed a substantial genetic additive component in their phenotypic variance, and that morphometric parameters of D. gouveai wings are appropriate quantitative markers for assessing morphological differentiation among populations.

ellipse method natural heritability repleta group wing morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bitner-Mathé, B.C. & L.B. Klaczko, 1999a. Plasticity of Drosophila melanogaster wing morphology: effects of sex, temperature and density. Genetica 105: 203–210.PubMedGoogle Scholar
  2. Bitner-Mathé, B.C. & L.B. Klaczko, 1999b. Size and shape her-itability in natural populations of Drosophila mediopunctata: temporal and microgeographical variation. Genetica 105: 35–42.PubMedGoogle Scholar
  3. Bitner-Mathé, B.C. & L.B. Klaczko, 1999c. Heritability, pheno-typic and genetic correlations of size and shape of Drosophila mediopunctata wings. Heredity 83: 688–696.PubMedGoogle Scholar
  4. Coyne, J.A. & E. Beecham, 1987. Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics 117: 727–737.PubMedGoogle Scholar
  5. Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics. Prentice Hall, Harlow, England.Google Scholar
  6. Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scand. J. Statistics 6: 65–70.Google Scholar
  7. Klaczko, L.B. & B.C. Bitner-Mathé, 1990. On the edge of a wing. Nature 346: 321.PubMedGoogle Scholar
  8. Lynch, M. & B. Walsh, 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA.Google Scholar
  9. Monteiro, S.G., 1997. Morfometria multivariada de populações naturais de Drosophila serido. PhD Dissertation, Universidade de São Paulo, Ribeirão Preto-SP, Brazil.Google Scholar
  10. Riska, B., T. Prout & M. Turelli, 1989. Laboratory estimates of heritability and genetic correlations in nature. Genetics 123: 865–871.PubMedGoogle Scholar
  11. Roff, D.A., 1997. Evolutionary Quantitative Genetics. Chapman & Hall, London and New York.Google Scholar
  12. Rohlf, F.J., 1998. TpsDig version 1.18. www.Life.Bio. SUNYSB.edu.Google Scholar
  13. Simons, A.M. & D. Roff, 1994. The effect of environmental varia-bility on the heritabilities of traits of a field cricket. Evolution 48: 1637–1649.Google Scholar
  14. Tidon-Sklorz, R. & F.M. Sene, 2001. Two new species of the Droso-phila serido sibling set (Diptera, Drosophilidae). Iheringia Série Zool. 90: 141–146.Google Scholar
  15. Weigensberg, I. & D.A. Roff, 1996. Natural heritabilities: can they be reliably estimated in the laboratory? Evolution 50: 2149–2157.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Evandro Marsola Moraes
    • 1
  • Fabio Melo Sene
    • 1
  1. 1.Departamento de Genética, Faculdade de Medicina de Ribeirão PretoUniversidade de São Paulo (USP)São PauloBrazil(Phone

Personalised recommendations