Advertisement

Genetica

, Volume 121, Issue 1, pp 65–74 | Cite as

Genetic (RAPD) Diversity between Oleria onega agarista and Oleria onega ssp. (Ithomiinae, Nymphalidae, Lepidoptera) in North-Eastern Peru

  • S. Gallusser
  • R. GuadagnuoloEmail author
  • M. Rahier
Article

Abstract

Oleria onega agarista Felder and Felder and Oleria onega ssp. nov. are two Ithomiinae subspecies from north-eastern Peru, that differ for some morphological and behavioural traits. Two contact zones are known near the town of Tarapoto: Ahuashiyacu, where both subspecies cohabit but do not seem to hybridise, and Estero (near the village of Shapaja), where they apparently hybridise. Genetic differences between the two subspecies and between populations were investigated with random amplified polymorphic DNA (RAPD) markers. Both Cluster and Principal Coordinates Analyses (CCoA and PCoA) performed using these data, provided a clear but weak discrimination between the two subspecies. Genetic diversity is much higher within the populations than between them. Moreover, the geographically more distant populations are grouped together by the genetic data. Morphological traits on the wing patterns of the hybrids are intermediary between the two butterflies subspecies, while RAPDs data place them closer to O. onega agarista than to O. onega ssp. The individuals of the Ahuashiyacu population are clearly separated into two groups, those of O. onega ssp. and O. onega agarista, by both morphology and RAPDs data. Moreover, none of those individuals show RAPD similarity with the hybrids, suggesting that hybridisation has not occurred in this population.

genetic variation hybridisation Ithomiinae Oleria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, J., L. Legal, H. Descimon & F. Michel, 1999. Molecular phylogeny of swallowtail butterflies of the tribe Papilionini (Papilionidea, Lepidoptera). Mol. Phylogenet. Evol. 12: 156–167.Google Scholar
  2. Ayres, D.R., D. Garcia-Rossi, H.G. Davis & D.R. Strong, 1999. Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by random amplified polymorphic DNA (RAPD). Mol. Ecol. 8: 1179–1186.Google Scholar
  3. Bartish, I.V., N. Jeppson & H. Nybom, 1999. Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Mol. Ecol. 8: 791–802.Google Scholar
  4. Barton, N.H. & G.M. Hewitt, 1985. Analysis of hybrid zones. Ann. Rev. Ecol. Syst. 16: 113–148.Google Scholar
  5. Barton, N.H. & G.M. Hewitt, 1989. Adaptation, speciation and hybrid zones. Nature 341: 497–503.Google Scholar
  6. Buerkle, C.A., R.J. Morris, M.A. Asmussen & L.H. Rieseberg, 1999. The likelihood of homoploid hybrid speciation. Heredity 84: 441–451.Google Scholar
  7. Bussell, J.D., 1999. The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae). Mol. Ecol. 8: 775–789.Google Scholar
  8. Clausing, G., K. Vickers & J.W. Kadereit, 2000. Historical biogeography in a linear system: genetic variation of Sea Rocket (Cakile maritima) and Sea Holly (Eryngium maritimum) along European coasts. Mol. Ecol. 9: 1823–1833.Google Scholar
  9. Comes, H.P. & R.J. Abbott, 2000. Random amplified polymorphic DNA (RAPD) and quantitative traits analyses across a major phylogeographical break in the Mediterranean ragwort Senecio gallicus Vill. (Asteraceae). Mol. Ecol. 9: 61–76.Google Scholar
  10. Excoffier, L., P.E. Smouse & J.M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.Google Scholar
  11. Gaston, K.J., 1998. Species-range size distributions: products of speciation, extinction and transformation. Phil. Trans. Royal Soc. Lond. Ser. B 353: 219–230.Google Scholar
  12. Guadagnuolo, R., D. Savova-Bianchi & F. Felber, 2001a. Gene flow from wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host.), as revealed by RAPD and microstaellite markers. Theor. Appl. Genet. 103: 1–8.Google Scholar
  13. Guadagnuolo, R., D. Savova-Bianchi & F. Felber, 2001b. Search for evidence of introgression of wheat (Triticum eastivum L.) traits into sea barley (Hordeum marinum s.str. Huds) and bearded wheatgrass (Elymus caninus L.) in central and northern Europe, using isozymes, RAPD and microsatellite markers. Theor. Appl. Genet. 103: 191–196Google Scholar
  14. Guadagnuolo, R., D. Savova-Bianchi & F. Felber, 2001c. Specific genetic markers for wheat, spelt, and four wild relatives: comparison of isozymes, RAPD's, and wheat microsatellites. Genome 44: 1–12.Google Scholar
  15. Hewitt, G.M., 1988. Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol. Evol. 3: 158–167.Google Scholar
  16. Huff, D.R., R. Peakall & P.E. Smouse, 1993. RAPD variation within and among natural populations of outcrossing buffalograss, (Buchloë dactyloides (Nutt.) Engelm). Theor. Appl. Genet. 86: 927–934.Google Scholar
  17. Jiggins, C.D., W.O. McMillan, W. Neukirchen & J. Mallet, 1996. What can hybrid zones tell us about speciation? The case of Heliconius erato and H. himera (Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 59: 221–242.Google Scholar
  18. Jiggins, C.D., W.O. McMillan, P. King & J. Mallet, 1997. The maintenance of species differences across a Heliconius hybrid zone. Heredity 79: 495–505.Google Scholar
  19. Joron, M., 2000. Coloration avertissante et mimetisme müllérien: le problè me de la diversification Thè se de Doctorat, Université des Sciences et Techniques du Languedoc, Montpellier. Académie de Montpellier.Google Scholar
  20. Joron, M., I.R. Wynn, G. Lamas & J.L.B. Mallet, 2001. Variable selection and the coexistence of multiple mimetic forms of the butterfly Heliconius numata. Evol. Ecol. 13: 721–754.Google Scholar
  21. Mallet, J., 1989. Analysis of clines and linkage disequilibria in Heliconius butterflies. Heredity 62: 283–284.Google Scholar
  22. Mallet, J., 1993. Speciation, raciation and color pattern evolution in Heliconius butterflies: the evidence from hybrid zones, pp. 226–260 in Hybrid Zones and the Evolutionary Process, edited by R.G. Harrisson. Oxford University Press, New York.Google Scholar
  23. Mallet, J. & N. Barton, 1989. Inference from clines stabilized by frequency-dependent selection. Genetics 122: 967–976.Google Scholar
  24. McMillan, W.O., C.D. Jiggins & J. Mallet, 1997. What initiates speciation in passion-vine butterflies? Proc. Natl. Acad. Sci. 94: 8628–8633.Google Scholar
  25. Moya, A., P. Goya, F. Cifuentes & J.L. Cenis, 2001. Genetic diversity of Iberian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) based on random amplified polymorphic DNA-polymerase chain reaction. Mol. Ecol. 10: 891–897.Google Scholar
  26. Nè ve, G. & E. Meglecz, 2000. Microsatellite frequencies in different taxa. Trends Ecol. Evol. 15: 376–377.Google Scholar
  27. Page, R.D.M., 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12: 357–358.Google Scholar
  28. Rieseberg, L.H., M.J. Kim & G.J. Seiler, 1999a. Introgression between cultivated sunflowers and a sympatric wild relative, Helianthus petiolaris (Asteraceae). Int. J. Plant. Sci. 160: 102–108.Google Scholar
  29. Rieseberg, L.H., J. Whiton & K. Gardner, 1999b. Hybrid zones and the genetic architecture of a barrier to gene flow between two wild sunflower species. Genetics 152: 713–727.Google Scholar
  30. Ritchie, M., D.M. Kidd & J.M. Gleason, 2001. Mitochondrial DNA variation and GIS analysis confirm a secondary origin of geographical variation in the bushcricket Ephippiger ephippiger (Orthoptera: Tettigoniideae), and resurrect two subspecies. Mol. Ecol. 10: 603–611.Google Scholar
  31. Schneider, S., D. Roessli & L. Excoffier, 2000. ARLEQUIN Version 2.000: A software for Population Genetic Data Analysis. University of Geneva, Geneva, Switzerland (http://anthro.unige.ch/arlequin)Google Scholar
  32. Schulte, R., 1999. Die Pfeilgiftfrösche-Artenteil, Peru (Vol. 2) INIBICO-Waiblingen, Germany, Waiblingen.Google Scholar
  33. Skotnicki, M.L., J.A. Ninham & P.M. Selkirk, 1999. Genetic diversity and dispersal of the moss Sarconeurum glaciale on Ross Island, east Antartica. Mol. Ecol. 8: 753–762.Google Scholar
  34. Vucetich, L.M., J.A. Vucetich, C.P. Joshi, T.A. Waite & R.O. Peterson, 2001. Genetic (RAPD) diversity in Peromyscus maniculatus populations in a naturally fragmented landscape. Mol. Ecol. 10: 35–40.Google Scholar
  35. Wiesing, K., H. Nybom, K. Wolff & W. Meyer, 1994. DNA fingerprinting in plants and fungi. CRC Press, Boca Raton.Google Scholar
  36. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535.Google Scholar
  37. Wolf, D., N. Takebayashi & L.H. Rieseberg, 2001. Predicting the risk of extinction through hybridization. Conserv. Biol. 15: 1039–1053.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Laboratoire d’Ecologie Animale et EntomologieUniversité de NeuchâtelNeuchâtelSwitzerland
  2. 2.Laboratoire de Botanique EvolutiveUniversité de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations