Genetica

, Volume 120, Issue 1–3, pp 195–212 | Cite as

Relations Between Cuticular Hydrocarbon (HC) Polymorphism, Resistance Against Desiccation and Breeding Temperature; A Model for HC Evolution in D. Melanogaster and D. Simulans

  • Jacques-Deric Rouault
  • Charlotte Marican
  • Claude Wicker-Thomas
  • Jean-Marc Jallon
Article

Abstract

D. simulans and D. melanogaster present two types of polymorphism in their cuticular hydrocarbon (HC) composition. Especially both sexes of D. simulans, and D. melanogaster males display 7-tricosene (7T) as the major compound type [7T]s and [7T]m, or 7-pentacosene (7P) [7P]s and [7P]m. D. melanogaster females display 7,11-heptacosadiene (7,11HD) as the major compound: [7,11HD]m, or 5,9-heptacosadiene (5,9HD): [5,9HD]m. The [7P]s, [7P]m and [5,9HD]m are mainly present in central Africa. A significant correlation was found between latitude and the proportion of compounds with 23 and 25 carbon atoms, especially 7T and 7P in both sexes of D. melanogaster. [7P]m type of D. melanogaster, characterized with an excess of C25 compounds, presents a higher resistance against desiccation than [7T]m type, where C23 compounds are more abundant. These differences can be correlated with calculated HC fusion temperatures. Moreover, increasing the breeding temperature from 18 to 29°C induces in D. melanogaster males an increase in 25C compounds and a decrease in 23C compounds, but the opposite effect in D. simulans. A mathematical model of biosynthesis, based on kinetics of elongation and decarboxylation enzymes, suggests that a simple variation of the efficiency of an elongation enzyme may account for the differences observed between the [7T]m and [7P]m types of D. melanogaster and [7T]s and [7P]s types D. simulans. Finally on the basis of the geographical distribution of the HC types of both Drosophila species, an evolutionary dispersal pathway is proposed and discussed in relation to the environment and reproductive behavior.

Drosophila evolution dispersal pathway geoclimatic variables hydrocarbons lipid biosynthesis temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antony, C. & J.-M. Jallon, 1981. Evolution des hydrocarbures comportementalement actifs de Drosophila melanogaster au cours de la maturation sexuelle. Comptes rendus de l'Académie des Sciences de Paris, Série III t292: 239–242.Google Scholar
  2. Antony, C. & J.-M. Jallon, 1982. The chemical basis for sex recognition in Drosophila melanogaster. J. Insect Physiol. 28: 873–880.Google Scholar
  3. Antony, C., T.L. Davis, D.A. Carlson, J.M. Péchiné & J.-M. Jallon, 1985. Compared behavioral responses of male Drosophila melanogaster (Canton S) to natural and synthetic aphrodisiacs. J. Chem. Ecol. 11: 1617–1629.Google Scholar
  4. Arienti, M., 1993. Analyse de la variabilité de quelques mécanismes impliqués dans le comportement sexuel de populations différentes de Drosophila melanogaster. Thèse de doctorat de l'Université Paris XI Orsay, France, 217 pp.Google Scholar
  5. Blomquist, G.L., J.W. Dillwith & T.S. Adams, 1987. Biosynthesis and endocrine regulation of sex pheromone production in Diptera, pp. 217–250 in Pheromone Biochemistry, edited by G.D. Prestwich & G.J. Blomquist. Academic Press, London.Google Scholar
  6. Carlson, D.A., M.S. Mayer, D.L. Silhacek, D. James, M. Beroza & B.A. Birl, 1971. Sex attractant pheromone of the house fly: isolation, identification and synthesis. Science 174: 57–59.Google Scholar
  7. Chan Yong, T.P. & J.-M. Jallon, 1986. Synthèse de novo d'hydrocarbures potentiellement aphrodisiaques chez les Drosophiles. Comptes rendus de l'Académie des Sciences de Paris, Série III 303: 97–202.Google Scholar
  8. Cobb, M. & J.-M. Jallon, 1990. Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster sub-group. Anim. Behav. 39: 1058–1067.Google Scholar
  9. Coyne, J.A., C. Wicker-Thomas & J.-M. Jallon, 1999. A gene responsible for a pheromonal polymorphism in Drosophila melanogaster. Genet. Res. Camb. 73: 189–203.Google Scholar
  10. Dallerac, R., C. Labeur, J.-M. Jallon, D.C. Knipple, W.L. Roelofs & C. Wicker-Thomas, 2000. A 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in D. melanogaster. Proc. Natl. Acad. Sci. USA 97: 9449–9454.Google Scholar
  11. David, J.R. & P. Capy, 1988. Genetic variation of Drosophila melanogaster natural population. TIG 4: 106–111.Google Scholar
  12. Doi, M., T. Nemoto, H. Nakanishi & Y. Oguma, 1997. Behavioral response of males to major sex pheromone component, (Z,Z)-5,25-hentriacontadiene, of Drosophila ananassae. J. Chem. Ecol. 23: 2067–2078.Google Scholar
  13. Fang, S., A. Takahashi & C.I. Wu, 2002. A mutation in the promoter of desaturase 2 is correlated with sexual isolation between Drosophila behavioral races. Genetics 162: 781–784.Google Scholar
  14. Ferveur, J.-F., 1991. Genetic control of pheromones in Drosophila simulans. 1 Ngbo, a locus on the second chromosome. Genetics 128: 293–301.Google Scholar
  15. Ferveur, J.-F. & J.-M. Jallon, 1996. Genetic control of male cuticular hydrocarbons in Drosophila melanogaster. Genet. Res. Camb. 67: 211–218.Google Scholar
  16. Ferveur, J.-F. & G. Sureau, 1996. Simultaneous influence on male courtship of stimulatory and inhibitoring pheromones produced by live sex-mosaic Drosophila melanogaster. Proc. R. Soc. Lond. B 263: 967–973.Google Scholar
  17. Ferveur, J.-F., M. Cobb, H. Boukella & J.-M. Jallon, 1996. World wide variations in Drosophila melanogaster sex pheromone: behavioural effects, genetic bases and potential evolutionary consequences. Genetica 97: 73–80.Google Scholar
  18. Ferveur, J.-F., F. Savarit, C.J. O'Kane, G. Sureau, R.J. Greenspan & J.-M. Jallon, 1997. Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276: 1555–1558.Google Scholar
  19. Gibbs, A.G., 1998. Water-proofing properties of cuticular lipids. Am. Zool. 38: 471–482.Google Scholar
  20. Gibbs, A. & J.G. Pomonis, 1995. Physical properties of insect cuticular hydrocarbons: model mixtures and lipid interactions. Comp. Biochem. Physiol. 112B: 667–672.Google Scholar
  21. Gibert, P., P. Capy, A. Imasheva, B. Moreteau, J.P. Morin, G. Pétavy & J.R. David, 2004. Comparative analysis of morphological traits among Drosophila melanogaster and D. simulans: genetic variability, clines and phenotypic plasticity. Genetica 120: 165–179.Google Scholar
  22. Hadley, N.F., 1978. Cuticular permeability of desert tenebrionid beetles: correlations with epicuticular hydrocarbon composition. Insect Biochem. 8: 17–22.Google Scholar
  23. Haerty, W., J.-M. Jallon, J.D. Rouault, C. Bazin & P. Capy, 2002. Reproductive isolation in natural populations of Drosophila melanogaster from Brazzaville (Congo). Genetica 116: 215–224.Google Scholar
  24. Jallon, J.-M., 1984. A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 14: 441–478.Google Scholar
  25. Jallon, J.-M. & Y. Hotta, 1979. Genetic and behavioral studies of female sex appeal in Drosophila. Behav. Genet. 9: 257–275.Google Scholar
  26. Jallon, J.-M. & Y. Hotta, 1981. Non chemical messages of the female Drosophila melanogaster, pp. 136-144 in Genetic Dissection of Drosophila Behavior, edited by Y. Hotta. University of Tokyo Press.Google Scholar
  27. Jallon, J.-M. & J.M. Péchiné, 1989. Une autre race chimique de Drosophila melanogaster en Afrique. Comptes rendus de l'Académie des Sciences de Paris, Série III 309: 1551–1556.Google Scholar
  28. Jallon, J.-M., C. Antony & O. Benamar, 1981. Un antiaphrodisiaque produit par les males de Drosophila melanogaster et transféré aux femelles lors de la copulation. Comptes rendus de l'Académie des Sciences de Paris, Série III 292: 1147–1149.Google Scholar
  29. Labeur, C., R. Dallerac & C. Wicker-Thomas, 2002. Involvement of desat1 gene in the control of Drosophila melanogaster pheromone biosynthesis. Genetica 114: 269–274.Google Scholar
  30. Lachaise, D. & J.-F. Silvain, 2004. How two Afrotropical endemics made two cosmopolitan human commensals: the Drosophila melanogaster-D. simulans palaeogeographic riddle. Genetica 120: 17–39.Google Scholar
  31. Lachaise, D., M.-L. Cariou, J.R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1988. Historical biogeography of the Drosophila melanogaster species subgroup. Evol. Biol. 22: 159–225.Google Scholar
  32. Lachaise, D., M. Harry, M. Solignac, F. Lemeunier, V. Bénassi & M.-L. Cariou, 2000. Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé. Proc. R. Soc. Lond. B 267: 1487–1495.Google Scholar
  33. Lemeunier, F., S. Aulard, M. Arienti, J.-M. Jallon, M.-L. Cariou & L. Tsacas, 1997. The ercepeae complex: new cases of insular speciation within the Drosophila ananassae species subgroup (melanogaster group) and descriptions of two new species (Diptera: Drosophilidae) Ann. Entomol. Soc. of Am. 90: 28–42.Google Scholar
  34. Lockey, K.H., 1976. Cuticular hydrocarbons of Locusta, Schistocerca and Periplaneta, and their role in waterproofing. Insect Biochem. 6: 457–472.Google Scholar
  35. Luyten, I., 1982. Variation intraspécifique et interspécifique des hydrocarbures cuticulaires chez Drosophila simulans et des espèces affines. Comptes rendus de l'Académie des Sciences de Paris, Série III 295: 733–736.Google Scholar
  36. Nemoto, T., M. Doi, K. Oshio, H. Matsubayashi, Y. Oguma, T. Suzuki & Y. Kuwabara, 1994. (Z,Z)-5,27-tritriaconvadiene: major sex pheromone of Drosophila pallidosa (Diptera: Drosophilidae). J. Chem. Ecol. 20: 3029–3037.Google Scholar
  37. Oguma, Y., T. Nemoto & Y. Kuwahara, 1992a. Z-11-pentacosene is the major sex pheromone component in Drosophila virilis. Chemoecology 3: 60–64.Google Scholar
  38. Oguma, Y., T. Nemoto & Y. Kuwahara, 1992b. A sex pheromone study of a fruit fly Drosophila virilis Sturtevant (Diptera: Drosophilidae): additive effect of cuticular alkadienes to major sex pheromone. Appl. Entomol. Zool. 27: 499–505.Google Scholar
  39. Oguma, Y., J.-M. Jallon, M. Tomaru & H. Matsubayashi, 1996. Courtship behavior and sexual isolation between Drosophila auraria and D. triauraria in darkness and light. J. Evol. Biol. 9: 803–815.Google Scholar
  40. Péchiné, J.M., F. Perez, C. Antony & J.-M. Jallon, 1985. A further characterization of Drosophila cuticular monoenes using a mass spectrometry method to localize double bonds in complex mixtures. Anal. Biochem. 145: 177–182.Google Scholar
  41. Péchiné, J.M., C. Antony & J.-M. Jallon, 1988. Precise characterization of cuticular compounds in young Drosophila by mass spectrometry. J. Chem. Ecol. 14: 1071–1085.Google Scholar
  42. Pennanec'h, M., 1993. Etudes sur la biosynthèse des hydrocarbures cuticulaires des drosophiles. Thèse de doctorat de l'Université Paris XI Orsay, France, 173 pp.Google Scholar
  43. Pennanec'h, M., L. Bricard, G. Kunesh & J.-M. Jallon, 1997. Incorporation of fatty acids into cuticular hydrocarbons of male and female Drosophila melanogaster. J. Insect Physiol. 43: 1111–1116.Google Scholar
  44. Ranz, J.M., C.I. Castillo-Davis, C.D. Meiklejohn & D.L. Hantl, 2003. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300: 1742–1745.Google Scholar
  45. Reed, J.R., P. Hernandez, G.J. Blomquist, R. Feyerreesen & R.C. Reitz, 1996. Hydrocarbon biosynthesis in the house fly, Musca domestica: substrate specificity and cofactor requirement of P450 hyd. Insect Biochem. Mol. Biol. 26: 267–276.Google Scholar
  46. Rouault, J., P. Capy & J.-M. Jallon, 2001. Variations of male cuticular hydrocarbons with geoclimatic variables: an adaptative mechanism in Drosophila melanogaster? Genetica 110: 117–130.Google Scholar
  47. Rybak, F., G. Sureau & T. Aubin, 2002. Functional coupling of acoustic and chemical signals in the courtship behavior of the male Drosophila melanogaster. Proc. R. Soc. Lond. B 269: 695–701.Google Scholar
  48. Savarit, F., G. Sureau, M. Cobb & J.-F. Ferveur, 1999. Genetic elimination of known pheromones reveals the fundamental chemical bases of mating and isolation of Drosophila. Proc. Natl. Acad. Sci. USA 96: 9015–9020.Google Scholar
  49. Scott, D., 1994. Genetic variation for female mate discrimination in Drosophila melanogaster. Evolution 48: 112–121.Google Scholar
  50. Scott, D. & L.L. Jackson, 1988. Interstrain comparison of male-predominant antiaphodisiacs in Drosophila melanogaster. J. Insect Physiol. 34: 863–871.Google Scholar
  51. Sureau, G. & J.-F. Ferveur, 1999. Co-adaptation of pheromone production and behavioural responses in Drosophila melanogaster males. Genet. Res. Camb. 74: 129–137.Google Scholar
  52. Takahashi, A., S.C. Tsaur, J. Coyne & C.I. Wu, 2001. The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98: 3920–3925.Google Scholar
  53. Tillman-Wall, J.A., D. Vanderwel, M.E. Kuenzli, R.C. Reitz & G.J. Blomquist, 1992. Regulation of sex pheromone biosynthesis of the house fly Musca domestica: relative contribution of the elongation and reductive step. Arch. Biochem. Mol. Biol. 28: 705–715.Google Scholar
  54. Tillman, J.A., S.J. Seybold, R.A. Jurenka & G.J. Blomquist, 1999. Insect pheromones: an overview of biosynthesis and endocrine regulation. Insect Biochem. Mol. Biol. 29: 481–514.Google Scholar
  55. Toolson, E.C., 1982. Effects of rearing temperature on cuticle permeability and epicuticular lipid composition in Drosophila pseudoobscura. J. Exp. Zool. 222: 249–253.Google Scholar
  56. Toolson, E.C., T.A. Markow, L.L. Jackson & R.W. Howard, 1990. Epicuticular hydrocarbon composition of wild and laboratory reared Drosophila mojavensis Patterson and Crow (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 83: 1165–1176.Google Scholar
  57. Vessereau, A., 1978. Sur l'intervalle de confiance d'une proportion: logique “classique” et logique “bayésienne”. Revue de Statistique Appliquée 26: 5–31.Google Scholar
  58. Wicker-Thomas, C., C. Henriet & R. Dallerac, 1997. Partial characterization of a fatty acid desaturase gene in Drosophila melanogaster. Insect Biochem. Mol. Biol. 27: 963–972.Google Scholar
  59. World Meteorological Organization, 1971. Climatological Normals (CLINO) for Climat and Climat Ship Stations for the Period 1931-1960. WMO/OMM No. 117, WMO, 2nd edn 1982.Google Scholar
  60. Yamamoto, D., J.-M. Jallon & A. Komatsu, 1997. Genetic dissection of sexual behavior in Drosophila melanogoster. Annu. Rev. Entomol. 42: 551–585.Google Scholar
  61. Zawitowski, S. & R.C. Richmond, 1986. Inhibition of courtship and mating of Drosophila melanogaster by the male-produced lipid, cis-vaccenyl acetate. J. Insect Physiol. 32: 189–192.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jacques-Deric Rouault
    • 1
  • Charlotte Marican
    • 1
  • Claude Wicker-Thomas
    • 1
  • Jean-Marc Jallon
    • 1
  1. 1.Laboratoire de Neurobiologie de l’Apprentissage, de la Memoire et de la Communication, CNRS UMR 8620Universite Paris SudOrsay CedexFrance

Personalised recommendations