, Volume 120, Issue 1–3, pp 151–163 | Cite as

Comparative Life Histories and Ecophysiology of Drosophila melanogaster and D. simulans

  • Jean R. David
  • Roland Allemand
  • Pierre Capy
  • Mohamed Chakir
  • Patricia Gibert
  • Georges Pétavy
  • Brigitte Moreteau


Numerous laboratory investigations have compared Drosophila melanogaster and D. simulans for various life history traits and fitness related ecophysiological parameters. From presently available information, it is however difficult to get a general comparative pattern describing the divergence of their ecological niches and understanding their demographic success. Two environmental factors seem however to have played a major role: temperature and alcoholic resources. From an ecophysiological approach, D. simulans may be described as generally more sensitive to stresses; other results point to this species as more cold adapted than its sibling; in some cases, however, D. simulans may appear as better adapted to a warm environment. When investigated, ecophysiological traits show a lesser geographic variability in D. simulans than in D. melanogaster. Presently available information does not explain the ecological prevalence of D. simulans in many places with a mild temperate or subtropical climate. This is presumably due to the fact that most comparisons have been done at a single, standard temperature of 25°C. Comparative studies should be undertaken, spanning the thermal ranges of the two species, and the phenotypic plasticity of ecophysiological traits should now be considered.

alcohol and acetic acid tolerance circadian rhythm CO2 tolerance egg production extreme temperatures flight capacity male fertility rate of development starvation and desiccation viability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allemand, R., 1982. Physiological tolerance of Drosophila simulans to dark environment: a comparison with Drosophila melanogaster. J. Insect Physiol. 28: 767–772.Google Scholar
  2. Allemand, R. & J.R. David, 1976. The circadian rhythm of oviposition in Drosophila melanogaster: a genetic latitudinal cline in wild populations. Experientia 32: 1403–1404.Google Scholar
  3. Allemand, R., Y. Cohet & O. Savolainen, 1976. Effects of different light regimens on the egg production and egg hatchability of Drosophila melanogaster adults. Acta Ent. Bohemoslovaca 73: 76–85.Google Scholar
  4. Boulétreau, M., P. Fouillet & D. Sillans, 1984. Differential sensitivity of Drosophila melanogaster and Drosophila simulans to chronic exposure to carbon dioxide during development. Experientia 40: 566–567.Google Scholar
  5. Boulétreau-Merle, J. & D. Sillans, 1996. Effects of interaction between temperature and CO2 on life-history traits of two Drosophila species (Diptera: Drosophilidae). Eur. J. Ent. 93: 451–459.Google Scholar
  6. Boulétreau-Merle, J., R. Allemand, Y. Cohet & J.R. David, 1982. Reproductive strategy in Drosophila melanogaster: signification of a divergence between temperate and tropical populations. Oecologia (Berl.) 53: 323–329.Google Scholar
  7. Brière, J.F., P. Pracros, A.Y. Le Roux & J.S. Pierre, 1999. A novel rate model of temperature-dependent development for Arthropods. Environ. Entomol. 28: 22–29.Google Scholar
  8. Capy, P., E. Pla & J.R. David, 1993. Phenotypic and genetic variability of morphometrical traits in natural populations of Drosophila melanogaster and D. simulans. I. Geographic variations. Genet. Sel. Evol. 25: 517–536.Google Scholar
  9. Chakir, M., O. Peridy, P. Capy, E. Pla & J.R. David, 1993. Adaptation to alcoholic fermentation in Drosophila: a parallel selection imposed by environmental ethanol and acetic acid. Proc. Natl. Acad. Sci. USA 90: 3621–3625.Google Scholar
  10. Chakir, M., B. Moreteau, E. Pla, A. Alonso-Moraga & J.R. David, 1995. Drosophila hydei, a fourth Drosophila species linked to man-made resources with a high ethanol content. Evol. Biol., Bogota 8-9: 149–156.Google Scholar
  11. Chakir, M., P. Capy, J. Genermont & E. Pla, 1996. Adaptation to fermenting resources in Drosophila melanogaster: ethanol and acetic acid tolerances share a common genetic basis. Evolution 50: 767–776.Google Scholar
  12. Chakir, M., A. Chafik, B. Moreteau, P. Gibert & J.R. David, 2002. Male sterility thermal thresholds in Drosophila: D. simulans appears more cold-adapted than its sibling D. melanogaster. Genetica 114: 195–205.Google Scholar
  13. Chippindale, A.K. & W.R. Rice, 2001. Y chromosome polymorphism is a strong determinant of male fitness in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98: 5677–5682.Google Scholar
  14. Chippindale, A.K., T.J.F. Chu & M.R. Rose, 1996. Complex tradeoffs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 50: 753–766.Google Scholar
  15. Cohan, F.M. & A.A. Hoffmann, 1989. Uniform selection as a diversifying force in evolution: evidence from Drosophila. Am. Nat. 134: 613–637.Google Scholar
  16. Cohet, Y., 1973. Stérilité mâle provoquée par une basse température de développement chez Drosophila melanogaster. C. R. Acad. Sci., Paris 276: 3343–3345.Google Scholar
  17. Cohet, Y. & J.R. David, 1980. Geographic divergence and sexual behaviour: comparison of mating systems in French and Afrotropical Drosophila melanogaster. Genetica 54: 161–165.Google Scholar
  18. David, J., 1970. Le nombre d'ovarioles chez Drosophila melanogaster: relation avec la fécondité et valeur adaptative. Arch. Zool. Exp. Gen. 111: 357–370.Google Scholar
  19. David, J. & C. Bocquet, 1975. Similarities and differences in latitudinal adaptation of two Drosophila sibling species. Nature 257: 588–590.Google Scholar
  20. David, J.R. & O. Kitagawa, 1982. Possible similarities in ethanol tolerance and latitudinal variations between Drosophila virilis and D. melanogaster. Jpn. J. Genet. 57: 89–95.Google Scholar
  21. David, J.R. & P. Capy, 1988. Genetic variation of Drosophila melanogaster natural populations. TIG 4: 106–111.Google Scholar
  22. David, J., M.F. Arens & Y. Cohet, 1971. Stérilité mâle à haute température chez Drosophila melanogaster: nature, progressivité, reversibilité des effets de la chaleur. C. R. Acad. Sci., Paris 272: 1007–1010.Google Scholar
  23. David, J., C. Biémont & P. Fouillet, 1974. Life time egg production curves in Drosophila melanogaster and their adjustment to mathematical models. Arch. Zool. Exp. Gen. 115: 263–277.Google Scholar
  24. David, J., Y. Cohet & P. Fouillet, 1975a. Physiologie de l'inanition et utilisation des réserves chez les adultes de Drosophila melanogaster. Arch. Zool. Exp. Gen. 116: 579–590.Google Scholar
  25. David, J., Y. Cohet & P. Fouillet, 1975b. La résistance à l'inanition chez les insectes: importance de la quantité des réserves lipidiques chez les adultes de D. melanogaster. C. R. Acad. Sci., Paris 280: 2571–2574.Google Scholar
  26. David, J., C. Bocquet, P. Fouillet & M.T. Arens, 1977. Tolérance génétique à l'alcool chez Drosophila: comparison des effets de la sélection chez D. melanogaster et D. simulans. C. R. Acad. Sci., Paris 285: 405–408.Google Scholar
  27. David, J.R., R. Allemand, J. van Herrewege & Y. Cohet, 1983. Ecophysiology: abiotic factors, pp. 105–170 in Genetics and biology of Drosophila, Vol. 3d, edited by M. Ashburner, H.L. Carson & J.N. Thompson. Academic Press, New York.Google Scholar
  28. David, J.R., P. Gibert, E. Pla, G. Pétavy, D. Karan & B. Moreteau, 1998. Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J. Therm. Biol. 23: 291–299.Google Scholar
  29. Futuyama, Y. & M. Watada, 1981. The microdistribution of Drosophila melanogaster and Drosophila simulans: a survey in the Bonin islands. Zool. Mag. (Tokyo) 90: 62–68.Google Scholar
  30. Gibert, P., B. Moreteau, E. Pla, G. Pétavy, D. Karan & J.R. David, 2001. Chill coma tolerance: a major climatic adaptation among Drosophila species. Evolution 55: 1063–1068.Google Scholar
  31. Gibert, P., P. Capy, A. Imasheva, B. Moreteau, J.P. Morin, G. Pétavy & J.R. David, 2004. Comparative analysis of morphological traits among Drosophila melanogaster and D. simulans: genetic variability, clines and phenotypic plasticity. Genetica 120: 165–179.Google Scholar
  32. Gravot, E., 2000. Interactions entre la pourriture acide de la vigne et les populations de drosophiles dans la région Bordelaise. Thèse de Doctorat, Université Paris VI, 100 pp.Google Scholar
  33. Hoffmann, A.A. & P.A. Parsons, 1991. Evolutionary Genetics and Environmental Stress. Oxford University Press, Oxford.Google Scholar
  34. Hoffmann, A.A. & P.A. Parsons, 1993. Direct and correlated responses to selection for desiccation resistance: a comparison of Drosophila melanogaster and D. simulans. J. Evol. Biol. 6: 643–657.Google Scholar
  35. Hoffmann, A.A. & P.A. Parsons, 1997. Extreme Environmental Change and Evolution. Cambridge University Press, Cambridge.Google Scholar
  36. Hoffmann, A.A. & M. Watson, 1993. Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am. Nat. 142: S93–S113.Google Scholar
  37. Hoffmann, A.A., R. Hallas, C. Sinclair & P. Mitrovski, 2001. Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic regions: patterns for desiccation, starvation, cold resistance, and associated traits. Evolution 55: 1621–1630.Google Scholar
  38. Jenkins, N.L. & A.A. Hoffmann, 1994. Genetic and maternal variation for heat resistance in Drosophila from the field. Genetics 137: 783–789.Google Scholar
  39. Jutier, D., N. Derome & C. Montchamp-Moreau, 2004. The sexratio trait and its evolution in Drosophila simulans: a comparative approach. Genetica 120: 87–99.Google Scholar
  40. Karan, D. & J.R. David, 2000. Cold tolerance in Drosophila: adaptive variations revealed by the analysis of starvation survival reaction norms. J. Therm. Biol. 25: 345–351.Google Scholar
  41. Karan, D. & R. Parkash, 1998. Desiccation tolerance and starvation resistance exhibit opposite latitudinal clines in Indian geographical populations of Drosophila kikkawai. Ecol. Ent. 23: 391–396.Google Scholar
  42. Karan, D., N. Dahiya, A.K. Munjal, P. Gibert, B. Moreteau, R. Parkash & J.R. David, 1997. Desiccation and starvation tolerance of adult Drosophila: opposite latitudinal clines in natural populations of three different species. Evolution 52: 825–831.Google Scholar
  43. Kawanishi, M. & T.K. Watanabe, 1978. Ecological factors controlling the coexistence of Drosophila simulans and Drosophila melanogaster. Rep. Nat. Inst. Genet., Mishima 28: 110–111.Google Scholar
  44. Lachaise, D. & J.F. Silvain, 2004. How two Afrotropical endemics made two cosmopolitan human commensals: the Drosophila melanogaster-D. simulans palaeogeographic riddle. Genetica 120: 17–39.Google Scholar
  45. Lachaise, D., M.L. Cariou, J.R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1988. Historical biogeography of the Drosophila melanogaster species subgroup. Evol. Biol. 22: 159–225.Google Scholar
  46. Louis, J. 1983. Les espèces dominantes de Drosophila dans les peuplements de l'Europe atlantique et méditerranéenne (Dipt., Drosophilidae). Annls Soc. ent. Fr. 19: 167–173.Google Scholar
  47. McKenzie, J.A. & P.A. Parsons, 1972. Alcohol tolerance: an ecological parameter in the relative success of Drosophila melanogaster and Drosophila simulans. Oecologia (Berlin) 10: 373–388.Google Scholar
  48. McKenzie, J.A. & P.A. Parsons, 1974a. The genetic architecture of resistance to desiccation in populations of Drosophila melanogaster and Drosophila simulans. Aust. J. Biol. Sci. 27: 441–456.Google Scholar
  49. McKenzie, J.A. & P.A. Parsons, 1974b. Numerical changes and environmental utilization in natural population of Drosophila. Aust. J. Zool. 22: 175–187.Google Scholar
  50. Montchamp-Moreau, C., 1983. Interspecific competition between Drosophila melanogaster and Drosophila simulans: temperature effect of competitive ability and fitness components. Genet. Sel. Evol. 15: 367–378.Google Scholar
  51. Morin, J.P., B. Moreteau, G. Pétavy, A.G. Imasheva & J.R. David, 1996. Body size and developmental temperature in Drosophila simulans: comparison of reaction norms with sympatric Drosophila melanogaster. Genet. Sel. Evol. 28: 415–436.Google Scholar
  52. Morin, J.P., B.Moreteau, G. Pétavy & J.R. David, 1999. Divergence of reaction norms of size characters between tropical and temperate populations of Drosophila melanogaster and D. simulans. J. Evol. Biol. 12: 329–339.Google Scholar
  53. Nielsen, K.M. & A.A. Hoffmann, 1985. Numerical changes and resource utilization in orchard populations of Drosophila. Aust. J. Zool. 33: 875–884.Google Scholar
  54. Parkash, R. & V. Vandna, 1995. Ethanol and acetic acid utilisation in colonizing populations of Drosophila jambulina and Drosophila kikkawai. Evoluc. Biol. 8-9: 97–106.Google Scholar
  55. Parkash, R., Neena & Shamina, 1993. Ethanol and acetic acid tolerance in three sibling species of melanogaster species subgroup. Evoluc. Biol. 7: 291–301.Google Scholar
  56. Parsons, P.A., 1975. The comparative evolutionary biology of the sibling species, Drosophila melanogaster and Drosophila simulans. Q. Rev. Biol. 50: 151–169.Google Scholar
  57. Parsons, P.A., 1983. The Evolutionary Biology of Colonizing Species. Cambridge University Press, Cambridge.Google Scholar
  58. Parsons, P.A. & S.M. Stanley, 1981. Domesticated and widespread species. Ashburner, Carson, Thompson, 1981-1986: 349–393.Google Scholar
  59. Pétavy, G., J.P. Morin, B. Moreteau & J.R. David, 1997. Growth temperature and phenotypic plasticity in two Drosophila sibling species: probable adaptive changes in flight capacities. J. Evol. Biol. 10: 875–887.Google Scholar
  60. Pétavy, G., J.R. David, P. Gibert & B. Moreteau, 2001a. Viability and rate of development at different temperatures in Drosophila: a comparison of constant and alternating thermal regimes. J. Therm. Biol. 26: 29–39.Google Scholar
  61. Pétavy, G., B. Moreteau, P. Gibert, J.P. Morin & J.R. David, 2001b. Phenotypic plasticity of body size in Drosophila: effects of a daily periodicity of growth temperature in two sibling species. Physiol. Entomol. 26: 351–361.Google Scholar
  62. Pétavy, G., B. Moreteau, P. Gibert & J.R. David, 2002. Phenotypic plasticity of body pigmentation in Drosophila: influence of a developmental thermoperiodic regime in two sibling species. Physiol. Entomol. 27: 124–135.Google Scholar
  63. Prince, G.J. & P.A Parsons, 1977. Adaptive behaviour of Drosophila adults in relation to temperature and humidity. Aust. J. Zool. 25: 285–290.Google Scholar
  64. Rice, W.R., 1998. Male fitness increases when females are eliminated from gene pool: implications for the Y chromosome. Proc. Natl. Acad. Sci. USA 95: 6217–6221.Google Scholar
  65. R'Kha, S., B. Moreteau, J.A. Coyne & J.R. David, 1997. Evolution of a lesser fitness trait: egg production in the specialist Drosophila sechellia. Genet. Res. Camb. 69: 17–23.Google Scholar
  66. Robinson, S.J.W., B. Zwaan & L. Partridge, 2000. Starvation resistance and adult body composition in a latitudinal cline of Drosophila melanogaster. Evolution 54: 1819–1824.Google Scholar
  67. Rouault, J. & J.R. David, 1982. Evolutionary biology of Drosophila melanogaster and Drosophila simulans: a behavioural divergence in microhabitat selection. Acta Oecol., Oecol. Genet. 3: 331–338.Google Scholar
  68. Stalker, H.D., 1980. Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing-loading and flight activity. Genetics 95: 211–223.Google Scholar
  69. Tantawy, A.O. & M.H. Soliman, 1967. Studies on natural populations of Drosophila. 6. Competition between Drosophila melanogaster and D. simulans. Evolution 21: 34–40.Google Scholar
  70. van Delden, W., 1982. The alcohol dehydrogenase polymorphism in Drosophila melanogaster. selection at an enzyme locus. Evol. Biol. 15: 187–222.Google Scholar
  71. van Herrewege, J. & J.R. David, 1997. Starvation and desiccation in Drosophila: Comparison of species from different climatic origins. Ecoscience 4: 151–157.Google Scholar
  72. Watson, M.J.O. & A.A. Hoffmann, 1996. Acclimation, cross-generation effects, and the response to selection for increased cold resistance in Drosophila. Evolution 50: 1182–1192.Google Scholar
  73. Yamamoto, A. & S. Ohba, 1984a. Temperature preferences of eleven Drosophila species from Japan: the relationship between preferred temperature and some ecological characteristics in their natural habitats. Zool. Sci. 1: 631–640.Google Scholar
  74. Yamamoto, A. & S. Ohba, 1984b. Heat and cold resistances of sixteen Drosophila species from Japan in relation to their field ecology. Zool. Sci. 1: 641–652.Google Scholar
  75. Yamamoto, A., Y. Fuyama & M. Watada, 1985. Habitat selection of two sibling species, Drosophila melanogaster and D. simulans: a further survey in the Bonin islands. Zool. Sci. 2: 265–270.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jean R. David
    • 1
  • Roland Allemand
    • 2
  • Pierre Capy
    • 1
    • 1
  • Mohamed Chakir
    • 3
  • Patricia Gibert
    • 1
  • Georges Pétavy
    • 1
  • Brigitte Moreteau
    • 1
  1. 1.UPR 9034, Populations, Génétique et EvolutionCNRSGif sur Yvette CedexFrance
  2. 2.UMR CNRS 5558Université Lyon-1VilleurbanneFrance
  3. 3.Faculté des Sciences et TechniquesUniversité Cadi AyyadMarrakechMorocco

Personalised recommendations