, Volume 119, Issue 3, pp 327–332 | Cite as

The Origin of the Achiasmatic XY Sex Chromosome System in Cacopsylla peregrina (Frst.) (Psylloidea, Homoptera)

  • Seppo Nokkala
  • Snejana Grozeva
  • Valentina Kuznetsova
  • Anna Maryanska-Nadachowska


The status of an extra univalent, if it is a B chromosome or an achiasmatic Y chromosome, associating with the X chromosome in male meiosis of Cacopsylla peregrina (Frst.) (Homoptera, Psylloidea) was analysed. One extra univalent was present in all males collected from three geographically well separated populations, it was mitotically stable, and showed precise segregation from the X chromosome. These findings led us to propose that the univalent represents in fact a Y chromosome. The behaviour of the X and Y chromosomes during meiotic prophase suggested that their regular segregation was based on an achiasmatic segregation mechanism characterised by a ‘touch and go’ pairing of segregating chromosomes at metaphase I. To explain the formation of the achiasmatic Y within an insect group with X0 sex chromosome system, it was suggested that the Y chromosome has evolved from a mitotically stable B chromosome that was first integrated into an achiasmatic segregation system with the X chromosome, and has later become fixed in the karyotype as a Y chromosome.

achiasmatic segregation B chromosome Homoptera Psylloidea Y chromosome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araujo, S.M.S.R., S.G. Pompolo, F. Perfectti & J.P.M. Camacho, 2001. Integration of a B chromosome into the A genome of a wasp. Proc. R. Soc. London B 268: 1127–1131.Google Scholar
  2. Carvalho, A.B., 2002. Origin and evolution of the Drosophila Y chromosome. Curr. Opin. Genet. Dev. 12: 664–668.PubMedGoogle Scholar
  3. Green, D.M., C.W. Zeyl & T.F. Sharbel, 1993. The evolution of hypervariable sex and supernumerary (B) chromosomes in the relict New Zealand frog, Leiopelma hochstetteri. J.Evol.Biol. 6: 417–441.Google Scholar
  4. Grozeva, S. & A. Maryanska-Nadachowska, 1995. Meiosis of two species of Cacopsylla with polymorphic sex chromosomes in males (Homoptera: Psyllidae). Folia Biol. (Krakow) 43: 93–98.Google Scholar
  5. Grozeva, S. & S. Nokkala, 1996. Chromosomes and their meiotic behaviour in two families of the primitive infraorder Dipsocoromorpha (Heteroptera). Hereditas 125: 31–36.Google Scholar
  6. Hackstein, J.H.P., R. Hochstein, E. Hausteck-Jungen & L.W. Beukeboom, 1996. Is the Y chromosome of Drosophila an evolved supernumerary chromosome? BioEssays 18: 317–323.PubMedGoogle Scholar
  7. Hewitt, G.W., 1973. The integration of supernumerary chromosomes into the Orthopteran genome. Cold Spring Harb. Symp. Quant. Biol. 38: 183–194.Google Scholar
  8. Jande, S.S., 1960. Pre-reductional sex chromosomes in the family Tingidae (Gymnocerata-Heteroptera). Nucleus 3: 209–214.Google Scholar
  9. Kimura, M. & H. Kayano, 1961. The maintenance of supernumerary chromosomes in wild populations of Lilium callosum by preferential segregation. Genetics 46: 1699–1712.PubMedGoogle Scholar
  10. Kuznetsova, V.G., S. Nokkala & A. Maryanska-Nadachowska, 1997. Karyotypes, sex chromosome systems, and male meiosis in Finnish psyllids (Homoptera: Psylloidea). Folia Biol. (Krakow) 45: 143–152.Google Scholar
  11. Maryanska-Nadachwoska, A., V.G. Kuznetsova & S. Nokkala, 2001. Standard and C-banded meiotic karyotypes of Psylloidea (Sternorrhyncha, Homoptera, Insecta). Folia Biol. (Krakow) 49: 53–62.Google Scholar
  12. Maryanska-Nadachowska, A., G.S. Taylor & V.G. Kuznetsova, 2001. Meiotic karyotypes and structure of testes in males of 17 species of Psyllidae: Spondiliaspidinae (Hemiptera: Psylloidea) from Australia. Aust. J. Entomol. 40: 349–356.Google Scholar
  13. Maryanska-Nadachowska, A., V.G. Kuznetsova, C.H.-T. Yang & I.H. Woudstra, 1996. New data on karyotypes and the number of testicular follicles in the psyllid families Aphalaridae, Psyllidae, Carsidaridae, and Triozidae (Homoptera: Psylloidea). Caryologia 49: 279–285.Google Scholar
  14. Matcharashvili, I.D. & V.G. Kuznetsova, 1997. Karyotypes, spermatogenesis, and morphology of the internal reproductive system in males of some species of psyllids (Homoptera: Psylloidea) of fauna of Georgia. I. Karyotypes and spermatogonial meiosis. Entomol. Rev. 77: 12–20.Google Scholar
  15. Nokkala, S., 1986a. The meiotic behaviour of B-chromosomes and their effect on the segregation of sex chromosomes in males of Hemerobius marginatus L. (Hemerobidae: Neuroptera). Hereditas 105: 221–227.Google Scholar
  16. Nokkala, S., 1986b. The mechanism behind the regular segregation of the m-chromosomes in Coreus marginatus L. (Coreidae: Hemiptera). Hereditas 105: 73–85.Google Scholar
  17. Nokkala, S., V. Kuznetsova & A. Maryanska-Nadachowska, 2000. Achiasmate segregation of a B chromosome from the X chromosome in two species of psyllids (Psylloidea: Homoptera). Genetica 108: 181–189.PubMedGoogle Scholar
  18. Sharbel, T.F., D.M. Green & A. Houben, 1998. B-chromosome origin in the endemic New Zealand frog Leiopelma hochstetteri through sex chromosome evolution. Genome 41: 14–22.PubMedGoogle Scholar
  19. Suomalainen, E. & O. Halkka, 1963. The mode of meiosis in the Psyllina. Chromosoma 14: 498–510.Google Scholar
  20. White, M.J.D., 1973. Animal Cytology and Evolution. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Seppo Nokkala
    • 1
  • Snejana Grozeva
    • 2
  • Valentina Kuznetsova
    • 3
  • Anna Maryanska-Nadachowska
    • 4
  1. 1.Laboratory of Genetics, Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.Institute of ZoologyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Department of Karyosystematics, Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakowPoland

Personalised recommendations