Advertisement

Nutrient Cycling in Agroecosystems

, Volume 68, Issue 1, pp 47–57 | Cite as

Phosphorus status of soil and leaching losses: results from operating and dismantled lysimeters after 15 experimental years

  • F. Godlinski
  • P. Leinweber
  • R. Meissner
  • J. Seeger
Article

Abstract

The objectives of the present study were: (1) to evaluate the predicting value of the most important European soil P tests for P leaching losses; and (2) to investigate how these soil P tests reflect the development of P depth profiles in original homogeneous soils of lysimeters. The study included more than 100 lysimeters, located at the Lysimeter Station Falkenberg/Saxony-Anhalt, UFZ-Centre for Environmental Research Leipzig-Halle GmbH, Germany. Soil textures were sand, sandy loam, loam and silt. The management forms were arable land, grassland and fallow with various variation in fertilisation, crop rotation and irrigation. Samples were collected from the A-horizons and from the whole profiles of eight set-aside and dismantled lysimeters at 10-cm sections. The concentrations of total P were determined monthly in the leachates and evaluated for a three-year period. The concentrations of P extracted by ammonium acetate lactate (AL-P), double lactate (DL-P), sodium bicarbonate (Olsen-P) and ammonium oxalate (OX-P) as well as Pt were significantly correlated with each other (P<0.05–P<0.001) for arable soils. The relevant regression coefficients were strongly influenced by soil texture, soil use and management. The mean annual P concentrations of the leachates were in the range 0.4–1.2 mg l−1 for sands and <0.001–0.1 mg l−1 for the textures sandy loam, loam and silt. These corresponded to P leaching losses of 0.001–2846 g ha−1 yr−1. Mean annual and maximum P concentrations and leaching losses were significantly (r>0.954, P<0.001) predicted by the OX-P concentrations of arable topsoils in lysimeters filled with sand. For sandy loam under grass the agronomic soil P tests (AL-P, DL-P and Olsen-P) enabled reasonable predictions of P in leachate. Under arable use, factors such as fertilisation, management intensity, depth of tillage and irrigation resulted in weak correlations between soil P concentrations and P in leachate. It was shown for the first time that all P extractants reflected P enrichments in topsoils and subsoils and the development of distinct depth profiles. Influence of soil use on the depth distribution of P was more pronounced in the 0–20 cm layer than in the subsoils. Here, the original homogeneous substrate had oscillating P concentrations at 10-cm increments under all soil uses. These could not be explained by Alox and Feox but were significantly correlated with the Ct contents and bulk density. This indicates that vertical movement of P containing organic matter along with differences in porosity contributed to the heterogeneous P distribution in the lysimeter subsoils. This new evidence must be considered if data sets from long-term lysimeter experiments are used to calibrate and validate P leaching models.

Depth profile Leaching losses Long-term experiment Lysimeter Phosphorus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson R. and Xia L. 2001. Agronomic measures of P, Q/I parameters and lysimeter-collectable P in subsurface soil horizons of a long-term slurry experiment. Chemosphere 42: 171–178.PubMedGoogle Scholar
  2. Barberis E., Ajmone Marsan F., Scalenghe R., Lammers A., Schwertmann U., Edwards A.C., Maguire R., Wilson M.J., Delgado A. and Torrent J. 1996. European soils overfertilized with phosphorus: Part 1. Basic properties. Fert. Res. 45: 199–207.Google Scholar
  3. Blake L., Mercik S., Koerschens M., Moskal S., Poulton P.R., Goulding K.W.T., Weigel A. and Powlson D.S. 2000. Phosphorus content in soil, uptake by plants and balances in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 56: 263–275.Google Scholar
  4. Breeuwsma A., Reijerink J.G.A. and Schoumans O.F. 1995. Phosphate saturated soils in the Eastern, Central and Southern Sand Districts (in Dutch). Report 68. DLO Winard Staring Centre for Integrated Land Soil and Water Research, Wageningen, The Netherlands.Google Scholar
  5. Brye K.R., Andraski T.W., Jarrel W.M., Bundy L.G. and Norman J.M. 2002. Phosphorus leaching under restored tallgrass prairie and corn agroecosystems. J. Environ. Qual. 31: 769–781.PubMedGoogle Scholar
  6. Chardon W. and Schoumans O. 1999. Solubilization of phosphorus: concepts and process description of chemical mechanisms.COST832-Meeting, WG 2, Cordoba, Spain, 13-15 May 1999 (http://www.alterra.wageningen-ur.nl./cost832/chardon.doc).Google Scholar
  7. Delgado A. and Torrent J. 2001. Comparison of soil extraction procedures for estimating phosphorus release potential of agricultural soils. Commun. Soil Sci. Plant Anal. 32(1-2): 87–105.Google Scholar
  8. De Smet J., Hofman G., Vanderdeelen J., Van Meirvenne M. and Baert L. 1996. Phosphate enrichment in the sandy loam soils of West-Flanders, Belgium. Fert. Res. 43: 209–215.Google Scholar
  9. Dick W.A. and Tabatabai M.A. 1977. An alkaline oxidation method for determination of total phosphorus in soils. Soil Sci. Soc. Am. J. 41: 511–514.Google Scholar
  10. Egnér H., Riehm H. and Domingo W.R. 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nähtoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor-und Kaliumbestimmung. Kungl.Lantbr. Hdgsk. Ann. 26: 199–215.Google Scholar
  11. Heckrath G., Brookes P.C., Poulton P.R. and Goulding K.W.T. 1995. Phosphorus leaching from soils containing different phosphorus concentration in the Broadbalk experiment. J. Environ.Qual. 24: 904–910.Google Scholar
  12. Hesketh N. and Brookes P.C. 2000. Development of an indicator for risk of phosphorus leaching. J. Environ. Qual. 29: 105–110.Google Scholar
  13. Hoffmann G. 1991. Die Untersuchung von Böden. VDLUFAMethodenbuch.Band I. VDLUFA-Verlag, Darmstadt, Germany.Google Scholar
  14. Kleinman P.J.A., Bryant R.B., Reid W.S., Sharpley A.N. and Pimentel D. 2000. Using soil phosphorus behavior to identify environmental thresholds. Soil Sci. 165: 943–950.Google Scholar
  15. Knappe S., Haferkorn U. and Meissner R. 2002. Influence of different agricultural management systems on nitrogen leaching: results of lysimeter studies. J. Plant Nutr. Soil Sci. 165: 73–77.Google Scholar
  16. Leinweber P., Lünsmann F. and Eckardt K.U. 1997. Phosphorus sorption capacities and saturation degrees of soils in two regions with different livestock densities in Northwest Germany. Soil Use Manage. 13: 82–89.Google Scholar
  17. Leinweber P., Meissner R., Eckhardt K.U. and Seeger J. 1999.Management effects on forms of phosphorus in soil and leaching losses. Eur. J. Soil Sci. 50: 413–424.Google Scholar
  18. Lookman R., Vandeweert N., Merckx R. and Vlassak K. 1995.Geostatistical assessment of the regional distribution of phosphate sorption capacity parameters (Feox and Alox in northern Belgium. Geoderma 66: 285–296.Google Scholar
  19. Lookman R., Jansen K., Merckx R. and Vlassak K. 1996. Relationship between soil properties and phosphate saturation parameters. A transect study in northern Belgium. Geoderma 69: 265–274.Google Scholar
  20. McDowell R.W. and Sharpley A.N. 2001a. Approximating phosphorus release from soils to surface runoff and subsurface drainage.J. Environ. Qual. 30(2): 508–520.PubMedGoogle Scholar
  21. McDowell R.W. and Sharpley A.N. 2001b. Phosphorus losses in subsurface flow before and after manure application to intensively farmed land. Sci. Tot. Environ. 278: 113–125.Google Scholar
  22. Meissner R., Rupp H., Seeger J. and Schonert P. 1995a. Langjährige Lysimeterversuchsergebnisse über den Einfluss einer gestaffelten Mineraldüngung auf den Nährstoffaustrag. Arch.Acker-Pfl. Boden 39: 219–1997.Google Scholar
  23. Meissner R., Rupp H., Seeger J. and Schonert P. 1995b. Influence of mineral fertilizers and different soil types on nutrient leaching: results of lysimeter studies in East Germany. Land Degrad.Rehab. 6: 163–170.Google Scholar
  24. Meissner R., Seeger J. and Rupp H. 1998. Lysimeter studies in East Germany concerning the influence of set aside of intensively farmed land on the seepage water quality. Agric. Ecosyst. Environ. 67: 161–173.Google Scholar
  25. Meissner R., Seeger J. and Rupp H. 2002. Effects of agricultural land use changes on diffuse pollution of water resources. Irrig.Drain 51: 119–127.Google Scholar
  26. Murphy J. and Riley J.R. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal.Chem. Acta 27: 31–36.Google Scholar
  27. Pautler M.C. and Sims J.T. 2000. Relationship between soil test phosphorus, soluble phosphorus, and phosphorus saturation in Delaware Soils. Soil Sci. Soc. Am. J. 64: 765–773.Google Scholar
  28. Pote D.H., Daniel T.C., Sharpley A.N., Moore P.A., Edwards D.R.and Nichols D.J. 1996. Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Sci. Soc. Am. J. 60: 855–859.Google Scholar
  29. Schoumans O.F. 1995. Validation of the process description of abiotic phosphate reactions in acid sandy soils. Report 381 (in Dutch). The Winand Staring Centre, Wageningen, The Netherlands.Google Scholar
  30. Schoumans O.F. and Groenendijk P. 2000. Modeling soil phosphorus levels and phosphorus leaching from agricultural land in The Netherlands. J. Environ. Qual. 29: 111–116.Google Scholar
  31. Schwertmann U. 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung und Bodenkunde 105: 194–202.Google Scholar
  32. Sharpley A., Smith S.J. and Bain W.R. 1993. Nitrogen and phophorus fate from long-term poultry litter applications to Oklahoma soils. Soil Sci. Soc. Am. J. 57: 1131–1137.Google Scholar
  33. Shepherd M.A. and Withers P.J. 1999. Applications of poultry litter and triple superphosphate fertilizer to a sandy soil: effects on soil phosphorus status and profile distribution. Nutr. Cycl. Agroecosyst. 54: 233–242.Google Scholar
  34. Sibbesen E. and Sharpley A. 1998. Setting and justifying upper critical limits for phosphorus in soils. In: Tunney H., Carton O.T., Brookes P.C. and Johnston A.E. (eds), Phosphorus Loss from Soil to Water. CAB International, Wallingford, UK, p. 151.Google Scholar
  35. Simard R.R., Beachemin S. and Haygarth P.M. 2000. Potential for preferential pathways of phosphorus transport. J. Environ. Qual. 29: 97–105.Google Scholar
  36. Sims J.T., Simard R.R. and Joern B.C. 1998. Phosphorus loss in agricultural drainage: historical perspective and current research.J. Environ. Qual. 27: 277–293.Google Scholar
  37. Sinaj S., Stamm C., Toor G.S., Condron L.M., Hendery T., Di H.J., Cameron K.C. and Frossard E. 2002. Phosphorus exchangeability and leaching losses from two grassland soils. J. Environ.Qual. 31: 319–330.PubMedGoogle Scholar
  38. Stamm C., Flühler H., Gächter R., Leuenberger J. and Wunderli H. 1998. Preferential transport of phosphorus in drained grassland soils. J. Environ. Qual. 27: 515–522.Google Scholar
  39. Tunney H., Breeuwsma A., Withers P.J.A. and Ehlert P.A.I. 1998.Phosphorus fertilizer strategies: present and future. In: Tunney H., Carton O.T., Brookes P.C. and Johnston A.E. (eds), Phosphorus Loss from Soil to Water. CAB International, Wallingford, UK, p. 177.Google Scholar
  40. Turner B.L. and Haygarth P.M. 2000. Phosphorus forms and concentration in leachate under four grassland soil types. Soil Sci.Soc. Am. J. 64: 1090–1099.Google Scholar
  41. Ulén B. 1999. Leaching and balances of phosphorus and other nutrients in lysimeters after application of organic manures or fertilizers.Soil Use Manage. 15: 56–61.Google Scholar
  42. Walther W., Becker K.W., Gliesche C., Pätsch M. and Schalla S. 2001. Zum Kenntnisstand über Umsetzung von Nährstoffen in der Dränzone und im Grundwasser und über deren Modellierung 1 Teil: Chemische und biologische Umsetzung. Landnutz. Landentwicklung 42: 224–230.Google Scholar
  43. Walther W., Strauch G., Kersebaum K.C., Reinstorf F. and Schäfer W. 2002. Zum Kenntnisstand über Umsetzung von Nährstoffen in der Dränzone und im Grundwasser und über deren Modellierung 2 Teil: Einsatz von Markierstoffen und mathematischen Modellen zur Beschreibung von Transport und Umsatz von Makronährstoffen in der wasserungesättigten Zone und im Grundwasser. Landnutz. Landentwicklung 43: 97–102.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • F. Godlinski
    • 1
  • P. Leinweber
    • 1
  • R. Meissner
    • 2
  • J. Seeger
    • 2
  1. 1.Institute of Soil Science and Plant NutritionUniversity of RostockRostockGermany
  2. 2.UFZ-Centre for Environmental Research Leipzig-Halle GmbH, Department of Soil ScienceLysimeter Station FalkenbergFalkenbergGermany

Personalised recommendations