Advertisement

Foundations of Physics Letters

, Volume 17, Issue 1, pp 81–88 | Cite as

Lorentz Covariant Canonical Formalism for Free Massive, Massless and Tachyonic Particles

  • P. Caban
  • M. Foryś
  • J. Rembieliński
Article
  • 21 Downloads

Abstract

We construct a consistent Lorentz-covariant canonical formalism for a free massive, massless and tachyonic particle in the framework of the absolute synchronization scheme of clocks. In the case of a massive particle our approach is canonically equivalent to the standard formulation which is not manifestly covariant. The absolute synchronization scheme seems to be the only one we can apply in the case of massless and tachyonic particles.

canoncial formalism absolute synchronization preferred frame massless particle tachyonic particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Green, J. Schwarz, and E. Witten, Superstring theory (Cambridge University Press, Cambridge, 1987).zbMATHGoogle Scholar
  2. 2.
    J. Rembielinski, Phys. Lett. A 78, 33(1980).ADSCrossRefGoogle Scholar
  3. 3.
    J. Rembielinski, Int. J. Mod. Phys. A 12, 1677(1997).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Caban and J. Rembielinski, Phys. Rev. A 59, 4187(1999).ADSCrossRefGoogle Scholar
  5. 5.
    H. Reichenbach, Axiomatization of the Theory of Relativity (University of California Press, Berkeley, 1969).Google Scholar
  6. 6.
    M. Jammer, Problems in the Foundations of Physics, Toraldo G. di Francia, ed. (North-Holland, Amsterdam, 1979).Google Scholar
  7. 7.
    C.M. Will, Phys. Rev. D 45, 403(1992).ADSCrossRefGoogle Scholar
  8. 8.
    C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993).CrossRefzbMATHGoogle Scholar
  9. 9.
    R. Mansouri and R.U. Sexl, Gen. Relativ. Gravit. 8, 497(1977).ADSCrossRefGoogle Scholar
  10. 10.
    R. Anderson, I. Vetharaniam and G.E. Stedman, Phys. Rep. 295, 93(1998).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Rembieliński and K.A. Smoliński, Phys. Rev. A 66, 052114(2002).ADSCrossRefGoogle Scholar
  12. 12.
    J. Rembieliński, K.A. Smoliński, and G. Duniec, Found. Phys. Lett. 14, 487(2001).MathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • P. Caban
    • 1
  • M. Foryś
    • 1
  • J. Rembieliński
    • 1
    • 2
  1. 1.Department of Theoretical PhsyicsUniversity of ŁódźŁódźPoland
  2. 2.College of Computer SciencesŁódźPoland

Personalised recommendations