Foundations of Physics

, Volume 34, Issue 7, pp 1063–1090 | Cite as

Quantum Event Structures from the Perspective of Grothendieck Topoi

  • Elias Zafiris


We develop a categorical scheme of interpretation of quantum event structures from the viewpoint of Grothendieck topoi. The construction is based on the existence of an adjunctive correspondence between Boolean presheaves of event algebras and Quantum event algebras, which we construct explicitly. We show that the established adjunction can be transformed to a categorical equivalence if the base category of Boolean event algebras, defining variation, is endowed with a suitable Grothendieck topology of covering systems. The scheme leads to a sheaf theoretical representation of Quantum structure in terms of variation taking place over epimorphic families of Boolean reference frames.

quantum event structures Boolean reference frames topos adjunction sheaves Grothendieck topology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Varadarajan, Geometry of Quantum Mechanics, Vol. 1 (Van Nostrand, Princeton, New Jersey, 1968).Google Scholar
  2. 2.
    G. Birkhoff and J. von Neumann, "The logic of quantum mechanics,"Ann. Math. 37, 823 (1936).Google Scholar
  3. 3.
    S. Kochen and E. Specker, "The problem of hidden variables in quantum mechanics,"J. Math. Mech. 17, 59 (1967).Google Scholar
  4. 4.
    F. W. Lawvere and S. H. Schanuel, Conceptual Mathematics (University Press, Cambridge,1997).Google Scholar
  5. 5.
    S. MacLane, Categories for the Working Mathematician (Springer, New York, 1971).Google Scholar
  6. 6.
    F. Borceaux, Handbook of Categorical Algebra, Vols. 1-3 (University Press, Cambridge,1994).Google Scholar
  7. 7.
    G. M. Kelly, "Basic concepts of enriched category theory," London Math. Soc. Lecture Notes Series 64, (1971).Google Scholar
  8. 8.
    J. L. Bell, "Observations on category theory,"Axiomathes 12, 151 (2001).Google Scholar
  9. 9.
    J. L. Bell, "From absolute to local mathematics,"synthese 69, 409 (1986).Google Scholar
  10. 10.
    J. L. Bell, "Categories, toposes and sets," Synthese 51(3), 293 (1982).Google Scholar
  11. 11.
    S. MacLane and I. Moerdijk, Sheaves in Geometry and Logic (Springer, New York, 1992).Google Scholar
  12. 12.
    J. L. Bell, Toposes and Local Set Theories (University Press, Oxford, 1988).Google Scholar
  13. 13.
    M. Artin, A. Grothendieck, and J. L. Verdier, Theorie de topos et cohomologie etale des schemas (Springer LNM 269 and 270) (Springer, Berlin, 1972).Google Scholar
  14. 14.
    E. Zafiris, "On quantum event structures. Part I: The categorical scheme," Found. Phys. Lett. 14(2), 147 (2001). 1090 ZafirisGoogle Scholar
  15. 15.
    E. Zafiris, "On quantum event structures. Part II: Interpretational aspects,"Found. Phys. Lett.14(2), 167 (2001).Google Scholar
  16. 16.
    J. Butterfield and C. J. Isham, "A topos perspective on the Kochen-Specker theorem: I. Quantum states as generalized valuations,"Int. J. Theoret. Phys. 37, 2669 (1998).Google Scholar
  17. 17.
    J. Butterfield and C. J. Isham, "A topos perspective on the Kochen-Specker theorem: II. Conceptual aspects and classical analogues,"Intern. J. Theoret. Phys. 38, 827 (1999).Google Scholar
  18. 18.
    J. P. Rawling and S. A. Selesnick, "Orthologic and quantum logic. models and computational elements," Journal of the Association for Computing Machinery 47, 721 (2000).Google Scholar
  19. 19.
    I. Raptis, "Presheaves, sheaves, and their topoi in quantum gravity and quantum logic," gr-qc/0110064.Google Scholar
  20. 20.
    J. Butterfield and C. J. Isham, "Some possible roles for topos theory in quantum theory nd quantum gravity," Found. Phys. 30, 1707 (2000).Google Scholar
  21. 21.
    G. Takeuti, "Two applications of logic to mathematics," Mathematical Society of Japan 13, Kano Memorial Lectures 3(1978).Google Scholar
  22. 22.
    M. Davis, "A relativity principle in quantum mechanics,"Int. J. Theoret. Phys. 16, 867 (1977).Google Scholar
  23. 23.
    E. Zafiris, "On Quantum Event Structures. Part III: Object of truth values,"Found. Phys. Lett., in press.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Elias Zafiris
    • 1
    • 2
  1. 1.Faculty of Mathematics and InformaticsUniversity of SofiaSofiaBulgaria
  2. 2.Institute of Mathematics PanepistimiopolisUniversity of AthensAthensGreece

Personalised recommendations